Skip to main content
Log in

Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Although the relationship between structural differences within the prefrontal cortex (PFC) and executive function (EF) has been widely explored in cognitively impaired populations, little is known about this relationship in healthy young adults. Using optimized voxel-based morphometry (VBM), surface-based morphometry (SBM), and fractional anisotropy (FA) we determined the association between regional PFC grey matter (GM) morphometry and white matter tract diffusivity with performance on tasks that tap different aspects of EF as drawn from Miyake et al.’s three-factor model of EF. Reductions in both GM volume (VBM) and cortical folding (SBM) in the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC) predicted better common EF, shifting-specific, and updating-specific performance, respectively. Despite capturing different components of GM morphometry, voxel- and surface-based findings were highly related, exhibiting regionally overlapping relationships with EF. Increased white matter FA in fiber tracts that connect the vmPFC and vlPFC with posterior regions of the brain also predicted better common EF and shifting-specific performance, respectively. These results suggest that the neural mechanisms supporting distinct aspects of EF may differentially rely on distinct regions of the PFC, and at least in healthy young adults, are influenced by regional morphometry of the PFC and the FA of major white matter tracts that connect the PFC with posterior cortical and subcortical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Kochunov P, Robin DA, Royall DR, Coyle T, Lancaster J, Kochunov V, Schlosser AE et al (2009) Can structural MRI indices of cerebral integrity track cognitive trends in executive control function during normal maturation and adulthood? Hum Brain Mapp 30(8):2581–2594. doi:10.1002/hbm.20689

    PubMed Central  PubMed  Google Scholar 

  • Alvarez J, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16(1):17–42. doi:10.1007/s11065-006-9002-x

    PubMed  Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings H, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341

    CAS  PubMed  Google Scholar 

  • Andersen S (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27(1–2):3–18

    PubMed  Google Scholar 

  • Andersson JLR, Jenkinson M, Smith S (2007a) Non-linear optimisation. FMRIB technical report TR07JA1. http://www.fmrib.ox.ac.uk/analysis/techrep. Accessed 6 Jan 2013

  • Andersson JLR, Jenkinson M, Smith S (2007b) Non-linear registration, aka Spatial normalisation. FMRIB technical report TR07JA2. http://www.fmrib.ox.ac.uk/analysis/techrep. Accessed 6 Jan 2013

  • Antonova E, Kumari V, Morris R, Halari R, Anilkumar A, Mehrotra R, Sharma T (2005) The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry 58(6):457–467. doi:10.1016/j.biopsych.2005.04.036

    PubMed  Google Scholar 

  • Arbuckle JL (2006) Amos (version 7.0) [computer program]. SPSS, Chicago

    Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821. doi:10.1006/nimg.2000.0582

    CAS  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243. doi:10.1006/nimg.2001.0961

    CAS  PubMed  Google Scholar 

  • Banich MT (2009) Executive function: the search for an integrated account. Curr Dir Psychol Sci 18(2):89–94. doi:10.1111/j.1467-8721.2009.01615.x

    Google Scholar 

  • Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49(5):1195–1205. doi:10.1016/j.cortex.2012.05.022

    PubMed Central  PubMed  Google Scholar 

  • Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003a) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088

    CAS  PubMed  Google Scholar 

  • Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003b) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757

    CAS  PubMed  Google Scholar 

  • Blakemore S, Choudhury S (2006) Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 47(3–4):296–312. doi:10.1111/j.1469-7610.2006.01611.x

    PubMed  Google Scholar 

  • Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS, Nahas Z (2008) Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res 101(1–3):142–151. doi:10.1016/j.schres.2007.11.023

    PubMed Central  PubMed  Google Scholar 

  • Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14(6):1454–1462. doi:10.1006/nimg.2001.0770

    CAS  PubMed  Google Scholar 

  • Bouret S, Richmond BJ (2010) Ventromedial and orbital prefrontal neurons differentially encode internally and externally driven motivational values in monkeys. J Neurosci Off J Soc Neurosci 30(25):8591–8601. doi:10.1523/JNEUROSCI.0049-10.2010

    CAS  Google Scholar 

  • Braver T, Bongiolatti S (2002) The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 15:523–536. doi:10.1006/nimg.2001.1019

    PubMed  Google Scholar 

  • Burgess PW, Scott SK, Frith CD (2003) The role of the rostral frontal cortex (area 10) in prospective memory: a lateral versus medial dissociation. Neuropsychologia 41(8):906–918. doi:10.1016/S0028-3932(02)00327-5

    PubMed  Google Scholar 

  • Burzynska AZ, Nagel IE, Preuschhof C, Gluth S, Bäckman L, Li S-C, Lindenberger U et al (2012) Cortical thickness is linked to executive functioning in adulthood and aging. Hum Brain Mapp 33(7):1607–1620. doi:10.1002/hbm.21311

    PubMed  Google Scholar 

  • Collette Fabienne, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, Salmon E (2005) Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp 25(4):409–423. doi:10.1002/hbm.20118

    PubMed  Google Scholar 

  • Courchesne E, Chisum HJ, Townsend J, Covington J, Egaas B, Harwood M, Hinds S et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216(3):672–682

    CAS  PubMed  Google Scholar 

  • Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7(9):415–423

    PubMed  Google Scholar 

  • D’Ardenne K, Eshel N, Luka J, Lenartowicz A, Nystrom LE, Cohen JD (2012) Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proc Natl Acad Sci USA 109(49):19900–19909. doi:10.1073/pnas.1116727109

    PubMed Central  PubMed  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    CAS  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    CAS  PubMed  Google Scholar 

  • Deary IJ, Bastin ME, Pattie A, Clayden JD, Whalley LJ, Starr JM, Wardlaw JM (2006) White matter integrity and cognition in childhood and old age. Neurology 66(4):505–512. doi:10.1212/01.wnl.0000199954.81900.e2

    CAS  PubMed  Google Scholar 

  • Depue BE, Burgess GC, Bidwell LC, Willcutt EG, Banich MT (2010) Behavioral performance predicts grey matter reductions in the right inferior frontal gyrus in young adults with combined type ADHD. Psychiatry Res 182(3):231–237. doi:10.1016/j.pscychresns.2010.01.012

    PubMed Central  PubMed  Google Scholar 

  • Derrfuss J, Brass M, Neumann J, Von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25(1):22–34. doi:10.1002/hbm.20127

    PubMed  Google Scholar 

  • Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    PubMed  Google Scholar 

  • Dineen RA, Vilisaar J, Hlinka J, Bradshaw CM, Morgan PS, Constantinescu CS, Auer DP (2009) Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain J Neurol 132(Pt 1):239–249. doi:10.1093/brain/awn275

    CAS  Google Scholar 

  • Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED et al (2006) A core system for the implementation of task sets. Neuron 50(5):799–812. doi:10.1016/j.neuron.2006.04.031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duarte A, Hayasaka S, Du A, Schuff N, Jahng G, Kramer J, Miller B et al (2006) Volumetric correlates of memory and executive function in normal elderly, mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 406(1–2):60–65. doi:10.1016/j.neulet.2006.07.029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dufour F, Schaer M, Debbané M, Farhoumand R, Glaser B, Eliez S (2008) Cingulate gyral reductions are related to low executive functioning and psychotic symptoms in 22q 11.2 deletion syndrome. Neuropsychologia 46(12):2986–2992. doi:10.1016/j.neuropsychologia.2008.06.012

    PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483

    CAS  PubMed  Google Scholar 

  • Elderkin-Thompson V, Ballmaier M, Hellemann G, Pham D, Kumar A (2008) Executive function and MRI prefrontal volumes among healthy older adults. Neuropsychology 22(5):626–637. doi:10.1037/0894-4105.22.5.626

    PubMed  Google Scholar 

  • Elderkin-Thompson V, Hellemann G, Pham D, Kumar A (2009) Prefrontal brain morphology and executive function in healthy and depressed elderly. Int J Geriatr Psychiatry 24(5):459–468. doi:10.1002/gps.2137

    PubMed  Google Scholar 

  • Ettinger U, Antonova E, Crawford TJ, Mitterschiffthaler MT, Goswani S, Sharma T, Kumari V (2005) Structural neural correlates of prosaccade and anti-saccade eye movements in healthy humans. Neuroimage 24(2):487–494. doi:10.1016/j.neuroimage.2004.08.019

    PubMed  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    CAS  PubMed  Google Scholar 

  • Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80

    CAS  PubMed  Google Scholar 

  • Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004a) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    PubMed  Google Scholar 

  • Fornito A, Wood SJ, Whittle S, Fuller J, Adamson C, Saling MM, Velakoulis D et al (2008) Variability of the paracingulate sulcus and morphometry of the medial frontal cortex: associations with cortical thickness, surface area, volume, and sulcal depth. Hum Brain Mapp 29(2):222–236. doi:10.1002/hbm.20381

    PubMed  Google Scholar 

  • Fornito A, Yücel M, Patti J, Wood SJ, Pantelis C (2009) Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 108(1–3):104–113. doi:10.1016/j.schres.2008.12.011

    CAS  PubMed  Google Scholar 

  • Friedman NP, Miyake A, Corley RP, Young SE, Defries JC, Hewitt JK (2006) Not all executive functions are related to intelligence. Psychol Sci 17(2):172–179. doi:10.1111/j.1467-9280.2006.01681.x

    PubMed  Google Scholar 

  • Gautam P, Cherbuin N, Sachdev PS, Wen W, Anstey KJ (2011) Relationships between cognitive function and frontal grey matter volumes and thickness in middle aged and early old-aged adults: the PATH through life study. Neuroimage 55(3):845–855. doi:10.1016/j.neuroimage.2011.01.015

    PubMed  Google Scholar 

  • Glascher J, Hampton AN, O’Doherty JP (2009) Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cereb Cortex 19(2):483–495. doi:10.1093/cercor/bhn098

    PubMed Central  PubMed  Google Scholar 

  • Goel V, Vartanian O (2005) Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb Cortex 15(8):1170–1177. doi:10.1093/cercor/bhh217

    PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101(21):8174–8179. doi:10.1073/pnas.0402680101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14(3):685–700. doi:10.1006/nimg.2001.0857

    CAS  PubMed  Google Scholar 

  • Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E (2007) Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. Am J Neuroradiol 28(2):226–235

    CAS  PubMed  Google Scholar 

  • Gunning-Dixon FM, Raz N (2003) Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia 41(14):1929–1941. doi:10.1016/S0028-3932(03)00129-5

    PubMed  Google Scholar 

  • Hampshire A, Owen AM (2006) Fractionating attentional control using event-related fMRI. Cereb Cortex 16(12):1679–1689. doi:10.1093/cercor/bhj116

    PubMed  Google Scholar 

  • Hartberg CB, Lawyer G, Nyman H, Jönsson EG, Haukvik UK, Saetre P, Bjerkan PS et al (2010) Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults. Psychiatry Res 182(2):123–133. doi:10.1016/j.pscychresns.2010.01.001

    PubMed  Google Scholar 

  • Head D, Kennedy KM, Rodrigue KM, Raz N (2009) Age-differences in perseveration: cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologica 47(4):1200–1203. doi:10.1016/j.neuropsychologia.2009.01.003

    Google Scholar 

  • Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23(12):2521–2530

    PubMed  Google Scholar 

  • Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39(1):336–347

    PubMed Central  PubMed  Google Scholar 

  • Huey ED, Goveia EN, Paviol S, Pardini M, Krueger F, Zamboni G, Tierney MC et al (2009) Executive dysfunction in frontotemporal dementia and corticobasal syndrome. Neurology 72(5):453–459. doi:10.1212/01.wnl.0000341781.39164.26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jurado MB, Rosselli M (2007) The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev 17(3):213–233. doi:10.1007/s11065-007-9040-z

    PubMed  Google Scholar 

  • Kaller CP, Heinze K, Mader I, Unterrainer JM, Rahm B, Weiller C, Köstering L (2012) Linking planning performance and gray matter density in mid-dorsolateral prefrontal cortex: moderating effects of age and sex. Neuroimage 63(3):1454–1463. doi:10.1016/j.neuroimage.2012.08.032

    PubMed  Google Scholar 

  • Kehagia AA, Murray GK, Robbins TW (2010) Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol 20(2):199–204

    CAS  PubMed  Google Scholar 

  • Keller SS, Baker G, Downes JJ, Roberts N (2009) Quantitative MRI of the prefrontal cortex and executive function in patients with temporal lobe epilepsy. Epilepsy Behav 15(2):186–195. doi:10.1016/j.yebeh.2009.03.005

    PubMed  Google Scholar 

  • Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of anterior prefrontal cortex in human cognition. Nature 399:148–151

    CAS  PubMed  Google Scholar 

  • Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, Sekihara K, Miyashita Y (1998) Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci 1(1):80–84. doi:10.1038/283

    CAS  PubMed  Google Scholar 

  • Koshino H, Minamoto T, Ikeda T, Osaka M, Otsuka Y, Osaka N (2011) Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution. PLoS One 6(8):e22909. doi:10.1371/journal.pone.0022909

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koutsouleris N, Patschurek-Kliche K, Scheuerecker J, Decker P, Bottlender R, Schmitt G, Rujescu D et al (2010) Neuroanatomical correlates of executive dysfunction in the at-risk mental state for psychosis. Schizophr Res 123(2–3):160–174. doi:10.1016/j.schres.2010.08.026

    PubMed  Google Scholar 

  • Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888. doi:10.1001/archpsyc.60.9.878

    PubMed  Google Scholar 

  • Li, Q., Sun, J., Guo, L., Zang, Y., Feng, Z., Huang, X., Yang, H., et al. (2010). Increased fractional anisotropy in white matter of the right frontal region in children with attention-deficit/hyperactivity disorder: a diffusion tensor imaging study. Neuroendocrinol Lett 31(6):747–53. http://www.ncbi.nlm.nih.gov/pubmed/21196923

    Google Scholar 

  • Makris N, Buka SL, Biederman J, Papadimitriou GM, Hodge SM, Valera EM, Brown AB et al (2008) Attention and executive systems abnormalities in adults with childhood ADHD: a DT-MRI study of connections. Cereb Cortex 18(5):1210–1220. doi:10.1093/cercor/bhm156

    PubMed  Google Scholar 

  • Matsui H, Nishinaka K, Oda M, Niikawa H, Komatsu K, Kubori T, Udaka F (2007) Wisconsin Card Sorting Test in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand 116(2):108–112. doi:10.1111/j.1600-0404.2006.00795.x

    CAS  PubMed  Google Scholar 

  • Mayr U, Kliegl R (2000) Task-set switching and long-term memory retrieval. J Exp Psychol Learn Mem Cogn 26(5):1124–1140. doi:10.1037//0278-7393.26.5.1124

    CAS  PubMed  Google Scholar 

  • McAlonan GM, Cheung V, Chua SE, Oosterlaan J, Hung S, Tang C, Lee C et al (2009) Age-related grey matter volume correlates of response inhibition and shifting in attention-deficit hyperactivity disorder. Br J Psychiatry J Ment Sci 194(2):123–129. doi:10.1192/bjp.bp.108.051359

    Google Scholar 

  • Medina D, DeToledo-Morrell L, Urresta F, Gabrieli JDE, Moseley M, Fleischman D, Bennett DA et al (2006) White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol Aging 27(5):663–672. doi:10.1016/j.neurobiolaging.2005.03.026

    PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. doi:10.1146/annurev.neuro.24.1.167

    CAS  PubMed  Google Scholar 

  • Miyake A, Friedman NP (2012) The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci 21(1):8–14. doi:10.1177/0963721411429458

    PubMed Central  PubMed  Google Scholar 

  • Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41(1):49–100. doi:10.1006/cogp.1999.0734

    CAS  PubMed  Google Scholar 

  • Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci Off J Soc Neurosci 21(19):7733–7741

    CAS  Google Scholar 

  • Murphy CF, Gunning-Dixon FM, Hoptman MJ, Lim KO, Ardekani B, Shields JK, Hrabe J et al (2007) White-matter integrity predicts Stroop performance in patients with geriatric depression. Biol Psychiatry 61(8):1007–1010. doi:10.1016/j.biopsych.2006.07.028

    PubMed Central  PubMed  Google Scholar 

  • Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch JP, Evans AC, Dagher A et al (2005) Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 64(2):224–229. doi:10.1212/01.WNL.0000149510.41793.50

    CAS  PubMed  Google Scholar 

  • Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16(7):1227–1233. doi:10.1162/0898929041920441

    PubMed  Google Scholar 

  • Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME, McCarley RW (2008) Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain J Neurol 131(Pt 1):180–195. doi:10.1093/brain/awm265

    Google Scholar 

  • Narayanan NS, Prabhakaran V, Bunge SA, Christoff K, Fine EM, Gabrieli JDE (2005) The role of the prefrontal cortex in the maintenance of working memory: an event-related fMRI analysis. Neuropsychology 19(2):223–232. doi:10.1037/0894-4105.19.2.223

    PubMed  Google Scholar 

  • Newman LM, Trivedi MA, Bendlin BB, Ries ML, Johnson SC (2007) The relationship between gray matter morphometry and neuropsychological performance in a large sample of cognitively healthy adults. Brain Imaging Behav 1(1–2):3–10. doi:10.1007/s11682-007-9000-5

    PubMed Central  PubMed  Google Scholar 

  • O’Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18(2):283–328. doi:10.1162/089976606775093909

    PubMed  Google Scholar 

  • Pa J, Possin KL, Wilson SM, Quitania LC, Kramer JH, Boxer AL, Weiner MW et al (2010) Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults. J Int Neuropsychol Soc JINS 16(4):640–650. doi:10.1017/S1355617710000408

    Google Scholar 

  • Palaniyappan L, Liddle PF (2012) Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. Neuroimage 60(1):693–699. doi:10.1016/j.neuroimage.2011.12.058

    PubMed  Google Scholar 

  • Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8(12):976–987. doi:10.1038/nrn2277

    CAS  PubMed  Google Scholar 

  • Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HBM, Rakic P, Kostovic I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108(32):13281–13286. doi:10.1073/pnas.1105108108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360:781–795

    PubMed Central  PubMed  Google Scholar 

  • Plassmann H, O’Doherty J, Rangel A (2007) Orbitalfronal cortex encodes willingness to pay in everyday economic transactions. J Neurosci 27(37):9984–9988. doi:10.1523/JNEUROSCI.2131-07.2007

    CAS  PubMed  Google Scholar 

  • Provost J-S, Petrides M, Simard F, Monchi O (2012) Investigating the long-lasting residual effect of a set shift on frontostriatal activity. Cereb Cortex 22(12):2811–2819. doi:10.1093/cercor/bhr358

    PubMed  Google Scholar 

  • Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry J Ment Sci 195(5):393–402. doi:10.1192/bjp.bp.108.055046

    Google Scholar 

  • Raz N, Gunning-Dixon F, Head D, Dupuis J, Acker J (1998) Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging. Neuropsychology 12(1):95–114. doi:10.1037/0894-4105.12.1.95

    CAS  PubMed  Google Scholar 

  • Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196

    PubMed Central  PubMed  Google Scholar 

  • Roberts R, Hager L, Heron C (1994) Prefrontal cognitive processes: working memory and inhibition in the ansitsaccade task. J Exp Psychol Gen 123(4):374–393. doi:10.1037/0096-3445.123.4.374

    Google Scholar 

  • Rüsch N, Spoletini I, Wilke M, Bria P, Di Paola M, Di Iulio F, Martinotti G et al (2007) Prefrontal-thalamic-cerebellar gray matter networks and executive functioning in schizophrenia. Schizophr Res 93(1–3):79–89. doi:10.1016/j.schres.2007.01.029

    PubMed  Google Scholar 

  • Ruscheweyh R, Deppe M, Lohmann H, Wersching H, Korsukewitz C, Duning T, Bluhm S et al (2012) Executive performance is related to regional gray matter volume in healthy older individuals. Hum Brain Mapp. doi:10.1002/hbm.22146

    PubMed  Google Scholar 

  • Salat D, Kaye J, Janowsky J (2002) Greater orbital prefrontal volume selectively predicts worse working memory performance in older adults. Cereb Cortex 12(5):494–505. doi:10.1093/cercor/12.5.494

    PubMed  Google Scholar 

  • Schmitz N, Arkink EB, Mulder M, Rubia K, Admiraal-Behloul F, Schoonman GG, Kruit MC et al (2008) Frontal lobe structure and executive function in migraine patients. Neurosci Lett 440(2):92–96. doi:10.1016/j.neulet.2008.05.033

    CAS  PubMed  Google Scholar 

  • Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075

    CAS  PubMed  Google Scholar 

  • Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529

    PubMed  Google Scholar 

  • Sescousse G, Redoute J, Dreher J (2010) The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci 30(39):13095–13104. doi:10.1523/JNEUROSCI.3501-10.2010

    CAS  PubMed  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    CAS  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    PubMed  Google Scholar 

  • Snyder HR, Banich MT, Munakata Y (2011) Choosing our words: retrieval and selection processes recruit shared neural substrates in left ventrolateral prefrontal cortex. J Cogn Neurosci 23(11):3470–3482. doi:10.1162/jocn_a_0023

    PubMed Central  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Tessner KD, Toga AW (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci Off J Soc Neurosci 21(22):8819–8829

    CAS  Google Scholar 

  • Sowell E, Peterson B, Thompson P, Welcome S, Henkenius A, Toga A (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008

    CAS  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    CAS  PubMed  Google Scholar 

  • Stuss DT, Alexander MP (2000) Executive functions and the frontal lobes: a conceptual view. Psychol Res 63(3–4):289–298

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R (2012a) Brain structures associated with executive functions during everyday events in a non-clinical sample. Brain Struct Funct. doi:10.1007/s00429-012-0444-z

    Google Scholar 

  • Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Nagase T, Nouchi R et al (2012b) Regional gray and white matter volume associated with Stroop interference: evidence from voxel-based morphometry. Neuroimage 59(3):2899–2907. doi:10.1016/j.neuroimage.2011.09.064

    PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruit cortico-basal ganglia loops. Nat Neurosci 7:887–893. doi:10.1038/nn1279

    CAS  PubMed  Google Scholar 

  • Vasic N, Walter H, Höse A, Wolf RC (2008) Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord 109(1–2):107–116. doi:10.1016/j.jad.2007.11.011

    PubMed  Google Scholar 

  • Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, Pollock BG et al (2012) Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging 33(1):21–34. doi:10.1016/j.neurobiolaging.2010.02.009

    PubMed Central  PubMed  Google Scholar 

  • Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affective Behav Neurosci 3(4):255–274

    Google Scholar 

  • Wager TD, Jonides J, Reading S (2004) Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 22(4):1679–1693. doi:10.1016/j.neuroimage.2004.03.052

    PubMed  Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl P, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87. doi:10.1148/radiol.2301021640

    PubMed  Google Scholar 

  • Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R et al (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146. doi:10.1016/j.neuroimage.2009.12.028

    PubMed Central  PubMed  Google Scholar 

  • Wunderlich K, Rangel A, O’Doherty JP (2010) Economic choices can be made using only stimulus values. Proc Natl Acad Sci 107(34):15005–15010. doi:10.1073/pnas.1002258107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yntema DB (1963) Keeping track of several things at once. Human Factors: The Journal of the Human Factors and Ergonomics Society 5(7):7–17. doi:10.1177/001872086300500102

    CAS  Google Scholar 

  • Zhang Y, Zhang J, Xu J, Wu X, Zhang Y, Feng H, Wang J et al (2013) Cortical gyrification reductions and subcortical atrophy in Parkinson’s disease. Mov Disord Off J Mov Disord Soc 00(00):1–5. doi:10.1002/mds.25680

    Google Scholar 

  • Zimmerman ME, Brickman AM, Paul RH, Grieve SM, Tate DF, Gunstad J, Cohen RA et al (2006) The relationship between frontal gray matter volume and cognition varies across the healthy adult lifespan. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 14(10):823–833. doi:10.1097/01.JGP.0000238502.40963.ac

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Akira Miyake and Dr. Naomi Friedman for providing us with the behavioral measures employed in this study. We would also like to thank Amy Turner and Kevin McManus at the University of Colorado, Boulder, for their invaluable contributions to subject recruitment and data collection. This work was supported by NIMH Grant # P50—079485 and NIH Grant # 1F32DA034412-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Depue.

Additional information

H.R. Smolker and B.E. Depue contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolker, H.R., Depue, B.E., Reineberg, A.E. et al. Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Struct Funct 220, 1291–1306 (2015). https://doi.org/10.1007/s00429-014-0723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0723-y

Keywords

Navigation