Skip to main content
Log in

Human V5/MT+: comparison of functional and cytoarchitectonic data

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

To date, the delineation of the human visual “motion area” still relies on functional paradigms originally devised to identify monkey area MT. Using fMRI, we have identified putative human area V5/MT+ in normals by modelling the BOLD responses to alternating radially moving and stationary dot patterns. Functional activations were compared with cytoarchitectonic probability maps of its putative correlate area hOc5, which was calculated based upon data from histological sections of ten human post-mortem brains. Bilateral visual cortex activations were seen in the single subject dynamic versus stationary contrasts and in the group random-effects analysis. Comparison of group data with area hOc5 revealed that 19.0%/39.5% of the right/left functional activation was assigned to the right/left hOc5. Conversely, 83.2%/53.5% of the right/left hOc5 was functionally activated. Comparison of functional probability maps (fPM) with area hOc5 showed that 28.6%/18.1% of the fPM was assigned to hOc5. In turn, 84.9%/41.5% of the area hOc5 was covered by the respective fPM. Thus, random-effects data and fPMs yielded similar results. The present study shows for the first time the correspondence between the functionally defined human V5/MT+ and the post-mortem cytoarchitectonic area hOc5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31(1):85–105

    Article  PubMed  CAS  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodman’s areas 17 and 18 brought into stereotaxic space. Where and how variable? NeuroImage 11:66–84

    CAS  Google Scholar 

  • Annese J, Gazzaniga MS, Toga AW (2005) Localization of the human cortical visual area MT based on computer aided histological analysis. Cerebral Cortex 15(7):1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MS, Cox RW, DeYoe EA (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol 78:516–520

    PubMed  CAS  Google Scholar 

  • Brett M (2002) http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205

    Article  PubMed  CAS  Google Scholar 

  • Dukelow SP, De Souza JFX, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of human MT+ complex using visual field and pursuit eye movements. J Neurophysiol 86:1991–2000

    PubMed  CAS  Google Scholar 

  • Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Pike GB, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10:454–463

    Article  PubMed  CAS  Google Scholar 

  • Dupont P, Orban GA, Vogels R, Bormans G, Nuyts J, Schiepers C, De Roo M, Mortelmans L (1993) Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: a positron emission tomography study. PNAS 90:10927–10931

    Article  PubMed  CAS  Google Scholar 

  • Dupont P, Orban GA, de Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424

    PubMed  CAS  Google Scholar 

  • Dupont P, de Bruyn B, Vandenberghe R, Rosier A-M, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7:283–292

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Evans AC, Marrett S, Neelin P, Collins L, Worsley K, Dai W, Milot S, Meyer E, Bub D (1992) Anatomical mapping of functional activation in stereotactic coordinate space. NeuroImage 1:43–53

    Article  PubMed  CAS  Google Scholar 

  • Fink GR, Halligan PW, Marshall JC, Frith CD, Frackowiak RS, Dolan RJ (1996) Where in the brain does visual attention select the forest and the trees? Nature 382:626–628

    Article  PubMed  CAS  Google Scholar 

  • Flechsig P (1927) Meine myelogenetische Hirnlehre mit biographischer Einleitung. Springer, Berlin

    Google Scholar 

  • Friston KJ, Holmes A, Poline J-B, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: Levels of inference and power. NeuroImage 4:223–235

    Article  PubMed  CAS  Google Scholar 

  • Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from fMRI studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Hasnain MK, Fox PT, Woldorff MG (1998) Intersubject variability of functional areas in the human visual cortex. Hum Brain Map 6:301–315

    Article  CAS  Google Scholar 

  • Heilman KM, Van den Abell T (1980) Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30:327–330

    PubMed  CAS  Google Scholar 

  • Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22:324–333

    Article  PubMed  CAS  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205

    PubMed  CAS  Google Scholar 

  • Kastner S, De Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111

    Article  PubMed  CAS  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Palomero-Gallagher N, Schormann T, Zilles K (2001) Cytoarchitecture and stereotactic location of a preoccipital area in the region of V5/MT. NeuroImage 13:S909

    Article  Google Scholar 

  • Marshall JC, Fink GR (2001) Spatial cognition: where we were and where we are. Neuroimage 14:2–7

    Article  Google Scholar 

  • Maunsell JHR, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334

    PubMed  CAS  Google Scholar 

  • Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157

    Article  PubMed  Google Scholar 

  • O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL (1997) Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18:591–598

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience 3(7):716–723

    Article  PubMed  CAS  Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex. A quantitative approach to cytoarchitectonics. NeuroImage 9:165–177

    CAS  Google Scholar 

  • Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging fMRI. J Neurosci 18:3816–3830

    PubMed  CAS  Google Scholar 

  • Sunaert S, van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging. Thieme, New York

    Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48

    Article  PubMed  CAS  Google Scholar 

  • Tootell RBH, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15(4):3215–3230

    PubMed  CAS  Google Scholar 

  • Watson JDG, Myers R, Frackowiak RSJ, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using Positron Emission Tomography and Magnetic Resonance Imaging. Cereb Cortex 3:79–94

    Article  PubMed  CAS  Google Scholar 

  • Wohlschläger AM, Specht K, Lie C, Wohlschläger A, Bente K, Pietrzyk U, Stöcker T, Zilles K, Amunts K, Fink GR (2005) Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2. NeuroImage 26(1):73–82

    Article  PubMed  Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum Press, New York

    Google Scholar 

  • Zeki S (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573

    PubMed  CAS  Google Scholar 

  • Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RSJ (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11(3):641–649

    PubMed  CAS  Google Scholar 

  • Zeki S (1993) A Vision of the Brain. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Zilles K, Dabringhaus A, Geyer S, Amunts K, Qu M, Schleicher A, Gilissen E, Schlaug G, Steinmetz H (1996) Structural asymmetries in the human forebrain and the forebrain of non-human primates and rats. Neurosci Biobehav Rev 20(4):593–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues from the MR and Cognitive Neurology group for their assistance. Gereon R. Fink is supported by the Deutsche Forschungsgemeinschaft (DFG KPO-112, TP1 and TP8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Wilms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilms, M., Eickhoff, S.B., Specht, K. et al. Human V5/MT+: comparison of functional and cytoarchitectonic data. Anat Embryol 210, 485–495 (2005). https://doi.org/10.1007/s00429-005-0064-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0064-y

Keywords

Navigation