Skip to main content
Top
Gepubliceerd in: Psychological Research 8/2020

15-06-2019 | Original Article

Active visuomotor interactions with virtual objects on touchscreens adhere to Weber’s law

Auteurs: Aviad Ozana, Gal Namdar, Tzvi Ganel

Gepubliceerd in: Psychological Research | Uitgave 8/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Recent findings suggest that the functional separation between vision-for-action and vision-for-perception does not generalize to situations in which two-dimensional (2D), virtual objects, are used as targets. For example, unlike grasping movements directed at real, three-dimensional (3D) objects, the trajectories of grasping movements directed at 2D objects adhere to the psychophysical principle of Weber’s law, indicating relative and less efficient processing of their size. Such inefficiency could be attributed to the fact that everyday interactions with touchscreens do not usually entail grasping movements. It is possible, therefore, that more typical interactions with virtual objects, which involve active manipulation of their size or location on a touchscreen, could be performed efficiently and in an absolute manner, and would violate Weber’s law. We examined this hypothesis in three experiments in which participants performed active interactions with virtual objects. In Experiment 1, participants made swiping gestures to move virtual objects across the touchscreen. In Experiment 2, participants touched the edges of virtual objects to enlarge their size. In Experiment 3, participants freely enlarged the size of virtual objects, without being required to touch their edges upon contact. In all experiments, the resolution of grip aperture decreased with the size of the target object, adhering to Weber’s law. These results suggest that active interactions with 2D objects on touchscreens are not performed in a natural, absolute manner which characterize visuomotor control of real objects.
Literatuur
go back to reference Afgin, O., Sagi, N., Nisky, I., Ganel, T., & Berman, S. (2017). Visuomotor resolution in telerobotic grasping with transmission delays. Frontiers in Robotics and AI, 4, 54. Afgin, O., Sagi, N., Nisky, I., Ganel, T., & Berman, S. (2017). Visuomotor resolution in telerobotic grasping with transmission delays. Frontiers in Robotics and AI, 4, 54.
go back to reference Aglioti, S., DeSouza, J. F. X., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679–685.PubMed Aglioti, S., DeSouza, J. F. X., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679–685.PubMed
go back to reference Ansuini, C., Santello, M., Massaccesi, S., & Castiello, U. (2006). Effects of end-goal on hand shaping. Journal of Neurophysiology, 95(4), 2456–2466.PubMed Ansuini, C., Santello, M., Massaccesi, S., & Castiello, U. (2006). Effects of end-goal on hand shaping. Journal of Neurophysiology, 95(4), 2456–2466.PubMed
go back to reference Armbrüster, C., & Spijkers, W. (2006). Movement planning in prehension: Do intended actions influence the initial reach and grasp movement? Motor Control, 10(4), 311–329.PubMed Armbrüster, C., & Spijkers, W. (2006). Movement planning in prehension: Do intended actions influence the initial reach and grasp movement? Motor Control, 10(4), 311–329.PubMed
go back to reference Ayala, N., Binsted, G., & Heath, M. (2018). Hand anthropometry and the limits of aperture separation determine the utility of Weber’s law in grasping and manual estimation. Experimental Brain Research, 236(8), 2439–2446.PubMed Ayala, N., Binsted, G., & Heath, M. (2018). Hand anthropometry and the limits of aperture separation determine the utility of Weber’s law in grasping and manual estimation. Experimental Brain Research, 236(8), 2439–2446.PubMed
go back to reference Baird, J. C., & Noma, E. J. (1978). Fundamentals of scaling and psychophysics. Amsterdam: Wiley. Baird, J. C., & Noma, E. J. (1978). Fundamentals of scaling and psychophysics. Amsterdam: Wiley.
go back to reference Bingham, G., Coats, R., & Mon-Williams, M. (2007). Natural prehension in trials without haptic feedback but only when calibration is allowed. Neuropsychologia, 45(2), 288–294.PubMed Bingham, G., Coats, R., & Mon-Williams, M. (2007). Natural prehension in trials without haptic feedback but only when calibration is allowed. Neuropsychologia, 45(2), 288–294.PubMed
go back to reference Bruno, N., Uccelli, S., Viviani, E., & de’Sperati, C. (2016). Both vision-for-perception and vision-for-action follow Weber’s law at small object sizes, but violate it at larger sizes. Neuropsychologia, 91, 327–334.PubMed Bruno, N., Uccelli, S., Viviani, E., & de’Sperati, C. (2016). Both vision-for-perception and vision-for-action follow Weber’s law at small object sizes, but violate it at larger sizes. Neuropsychologia, 91, 327–334.PubMed
go back to reference Chen, J., Sperandio, I., & Goodale, M. A. (2015). Differences in the effects of crowding on size perception and grip scaling in densely cluttered 3-D scenes. Psychological Science, 26(1), 58–69.PubMed Chen, J., Sperandio, I., & Goodale, M. A. (2015). Differences in the effects of crowding on size perception and grip scaling in densely cluttered 3-D scenes. Psychological Science, 26(1), 58–69.PubMed
go back to reference Foster, R. M., & Franz, V. H. (2013). Inferences about time course of Weber’s Law violate statistical principles. Vision Research, 78, 56–60.PubMed Foster, R. M., & Franz, V. H. (2013). Inferences about time course of Weber’s Law violate statistical principles. Vision Research, 78, 56–60.PubMed
go back to reference Freud, E., & Ganel, T. (2015). Visual control of action directed toward two-dimensional objects relies on holistic processing of object shape. Psychonomic Bulletin & Review, 22(5), 1377–1382. Freud, E., & Ganel, T. (2015). Visual control of action directed toward two-dimensional objects relies on holistic processing of object shape. Psychonomic Bulletin & Review, 22(5), 1377–1382.
go back to reference Freud, E., Ganel, T., Avidan, G., & Gilaie-Dotan, S. (2016). Functional dissociation between action and perception of object shape in developmental visual object agnosia. Cortex, 76, 17–27.PubMed Freud, E., Ganel, T., Avidan, G., & Gilaie-Dotan, S. (2016). Functional dissociation between action and perception of object shape in developmental visual object agnosia. Cortex, 76, 17–27.PubMed
go back to reference Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M. A., & Culham, J. C. (2017). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex, 98, 34–48.PubMed Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M. A., & Culham, J. C. (2017). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex, 98, 34–48.PubMed
go back to reference Ganel, T. (2015). Weber’s law in grasping. Journal of Vision, 15(8), 18.PubMed Ganel, T. (2015). Weber’s law in grasping. Journal of Vision, 15(8), 18.PubMed
go back to reference Ganel, T., Chajut, E., & Algom, D. (2008). Visual coding for action violates fundamental psychophysical principles. Current Biology, 18(14), R599–R601.PubMed Ganel, T., Chajut, E., & Algom, D. (2008). Visual coding for action violates fundamental psychophysical principles. Current Biology, 18(14), R599–R601.PubMed
go back to reference Ganel, T., Freud, E., & Meiran, N. (2014). Action is immune to the effects of Weber’s law throughout the entire grasping trajectory. Journal of Vision, 14(7), 11.PubMed Ganel, T., Freud, E., & Meiran, N. (2014). Action is immune to the effects of Weber’s law throughout the entire grasping trajectory. Journal of Vision, 14(7), 11.PubMed
go back to reference Ganel, T., & Goodale, M. A. (2003). Visual control of action but not perception requires analytical processing of object shape. Nature, 426(6967), 664.PubMed Ganel, T., & Goodale, M. A. (2003). Visual control of action but not perception requires analytical processing of object shape. Nature, 426(6967), 664.PubMed
go back to reference Ganel, T., & Goodale, M. A. (2019). Still holding after all these years: An action-perception dissociation in patient DF. Neuropsychologia, 128, 249–254.PubMed Ganel, T., & Goodale, M. A. (2019). Still holding after all these years: An action-perception dissociation in patient DF. Neuropsychologia, 128, 249–254.PubMed
go back to reference Ganel, T., Namdar, G., & Mirsky, A. (2017). Bimanual grasping does not adhere to Weber’s law. Scientific Reports, 7(1), 6467.PubMedPubMedCentral Ganel, T., Namdar, G., & Mirsky, A. (2017). Bimanual grasping does not adhere to Weber’s law. Scientific Reports, 7(1), 6467.PubMedPubMedCentral
go back to reference Goodale, M. A., & Ganel, T. (2015). Different modes of visual organization for perception and for action. The Oxford Handbook of Perceptual Organization, 3(1), 1–19. Goodale, M. A., & Ganel, T. (2015). Different modes of visual organization for perception and for action. The Oxford Handbook of Perceptual Organization, 3(1), 1–19.
go back to reference Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32(10), 1159–1178.PubMed Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32(10), 1159–1178.PubMed
go back to reference Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.PubMed Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.PubMed
go back to reference Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154–156.PubMed Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154–156.PubMed
go back to reference Heath, M., Davarpanah Jazi, S. D., Holmes, S., et al. (2015). An inverse grip starting posture gives rise to time-dependent adherence to Weber’s Law: A reply to Ganel et al. Journal of Vision, 15(6), 1.PubMed Heath, M., Davarpanah Jazi, S. D., Holmes, S., et al. (2015). An inverse grip starting posture gives rise to time-dependent adherence to Weber’s Law: A reply to Ganel et al. Journal of Vision, 15(6), 1.PubMed
go back to reference Heath, M., Holmes, S. A., Mulla, A., & Binsted, G. (2012). Grasping time does not influence the early adherence of aperture shaping to Weber’s law. Frontiers in Human Neuroscience, 6, 332.PubMedPubMedCentral Heath, M., Holmes, S. A., Mulla, A., & Binsted, G. (2012). Grasping time does not influence the early adherence of aperture shaping to Weber’s law. Frontiers in Human Neuroscience, 6, 332.PubMedPubMedCentral
go back to reference Heath, M., Manzone, J., Khan, M., & Davarpanah Jazi, S. D. (2017). Vision for action and perception elicit dissociable adherence to Weber’s law across a range of ‘graspable’target objects. Experimental Brain Research, 235(10), 3003–3012.PubMed Heath, M., Manzone, J., Khan, M., & Davarpanah Jazi, S. D. (2017). Vision for action and perception elicit dissociable adherence to Weber’s law across a range of ‘graspable’target objects. Experimental Brain Research, 235(10), 3003–3012.PubMed
go back to reference Heath, M., Mulla, A., Holmes, S. A., & Smuskowitz, L. R. (2011). The visual coding of grip aperture shows an early but not late adherence to Weber’s law. Neuroscience Letters, 490(3), 200–204.PubMed Heath, M., Mulla, A., Holmes, S. A., & Smuskowitz, L. R. (2011). The visual coding of grip aperture shows an early but not late adherence to Weber’s law. Neuroscience Letters, 490(3), 200–204.PubMed
go back to reference Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly. American Association for Health, Physical Education and Recreation, 31(3), 448–458. Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly. American Association for Health, Physical Education and Recreation, 31(3), 448–458.
go back to reference Hosang, S., Chan, J., Davarpanah Jazi, S., & Heath, M. (2016). Grasping a 2D object: Terminal haptic feedback supports an absolute visuo-haptic calibration. Experimental Brain Research, 234(4), 945–954.PubMed Hosang, S., Chan, J., Davarpanah Jazi, S., & Heath, M. (2016). Grasping a 2D object: Terminal haptic feedback supports an absolute visuo-haptic calibration. Experimental Brain Research, 234(4), 945–954.PubMed
go back to reference Hu, Y., & Goodale, M. A. (2000). Grasping after a delay shifts size-scaling from absolute to relative metrics. Journal of Cognitive Neuroscience, 12(5), 856–868.PubMed Hu, Y., & Goodale, M. A. (2000). Grasping after a delay shifts size-scaling from absolute to relative metrics. Journal of Cognitive Neuroscience, 12(5), 856–868.PubMed
go back to reference Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208.PubMed Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208.PubMed
go back to reference Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 63(2), 124.PubMed Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 63(2), 124.PubMed
go back to reference Jazi, S. D., & Heath, M. (2014). Weber’s law in tactile grasping and manual estimation: feedback-dependent evidence for functionally distinct processing streams. Brain and cognition, 86, 32–41.‏ Jazi, S. D., & Heath, M. (2014). Weber’s law in tactile grasping and manual estimation: feedback-dependent evidence for functionally distinct processing streams. Brain and cognition, 86, 32–41.‏
go back to reference Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345.PubMed Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345.PubMed
go back to reference Kopiske, K. K., Bruno, N., Hesse, C., Schenk, T., & Franz, V. H. (2016). The functional subdivision of the visual brain: Is there a real illusion effect on action? A multi-lab replication study. Cortex, 79, 130–152.PubMed Kopiske, K. K., Bruno, N., Hesse, C., Schenk, T., & Franz, V. H. (2016). The functional subdivision of the visual brain: Is there a real illusion effect on action? A multi-lab replication study. Cortex, 79, 130–152.PubMed
go back to reference Löwenkamp, C., Gärtner, W., Haus, I. D., & Franz, V. H. (2015). Semantic grasping escapes Weber’s law. Neuropsychologia, 70, 235–245.PubMed Löwenkamp, C., Gärtner, W., Haus, I. D., & Franz, V. H. (2015). Semantic grasping escapes Weber’s law. Neuropsychologia, 70, 235–245.PubMed
go back to reference Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Experimental Psychology, 41, 365. Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Experimental Psychology, 41, 365.
go back to reference Namdar, G., Algom, D., & Ganel, T. (2016). Dissociable effects of stimulus range on perception and action. Cortex, 98, 28–33.PubMed Namdar, G., Algom, D., & Ganel, T. (2016). Dissociable effects of stimulus range on perception and action. Cortex, 98, 28–33.PubMed
go back to reference Ozana, A., & Ganel, T. (2018). Dissociable effects of irrelevant context on 2D and 3D grasping. Attention, Perception, & Psychophysics, 80(2), 564–575. Ozana, A., & Ganel, T. (2018). Dissociable effects of irrelevant context on 2D and 3D grasping. Attention, Perception, & Psychophysics, 80(2), 564–575.
go back to reference Rossit, S., Harvey, M., Butler, S. H., Szymanek, L., Morand, S., Monaco, S., & McIntosh, R. D. (2018). Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex, 98, 84–101.PubMed Rossit, S., Harvey, M., Butler, S. H., Szymanek, L., Morand, S., Monaco, S., & McIntosh, R. D. (2018). Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex, 98, 84–101.PubMed
go back to reference Smeets, J. B., & Brenner, E. (2008). Grasping Weber’s law. Current Biology, 18(23), R1089–R1090.PubMed Smeets, J. B., & Brenner, E. (2008). Grasping Weber’s law. Current Biology, 18(23), R1089–R1090.PubMed
go back to reference Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 1(1), 130.PubMedPubMedCentral Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 1(1), 130.PubMedPubMedCentral
go back to reference Utz, K. S., Hesse, C., Aschenneller, N., & Schenk, T. (2015). Biomechanical factors may explain why grasping violates Weber’s law. Vision Research, 111, 22–30.PubMed Utz, K. S., Hesse, C., Aschenneller, N., & Schenk, T. (2015). Biomechanical factors may explain why grasping violates Weber’s law. Vision Research, 111, 22–30.PubMed
go back to reference Westwood, D. A., & Goodale, M. A. (2003). Perceptual illusion and the real-time control of action. Spatial Vision, 16(3), 243–254.PubMed Westwood, D. A., & Goodale, M. A. (2003). Perceptual illusion and the real-time control of action. Spatial Vision, 16(3), 243–254.PubMed
Metagegevens
Titel
Active visuomotor interactions with virtual objects on touchscreens adhere to Weber’s law
Auteurs
Aviad Ozana
Gal Namdar
Tzvi Ganel
Publicatiedatum
15-06-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01210-5

Andere artikelen Uitgave 8/2020

Psychological Research 8/2020 Naar de uitgave