Skip to main content
Log in

Increased cognitive control after task conflict? Investigating the N-3 effect in task switching

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Task inhibition is considered to facilitate switching to a new task and is assumed to decay slowly over time. Hence, more persisting inhibition needs to be overcome when returning to a task after one intermediary trial (ABA task sequence) than when returning after two or more intermediary trials (CBA task sequence). Schuch and Grange (J Exp Psychol Learn Mem Cogn 41:760–767, 2015) put forward the hypothesis that there is higher task conflict in ABA than CBA sequences, leading to increased cognitive control in the subsequent trial. They provided evidence that performance is better in trials following ABA than following CBA task sequences. Here, this effect of the previous task sequence (“N-3 effect”) is further investigated by varying the cue–stimulus interval (CSI), allowing for short (100 ms) or long (900 ms) preparation time for the upcoming task. If increased cognitive control after ABA involves a better preparation for the upcoming task, the N-3 effect should be larger with long than short CSI. The results clearly show that this is not the case. In Experiment 1, the N-3 effect was smaller with long than short CSI; in Experiment 2, the N-3 effect was not affected by CSI. Diffusion model analysis confirmed previous results in the literature (regarding the effect of CSI and of the ABA–CBA difference); however, the N-3 effect was not unequivocally associated with any of the diffusion model parameters. In exploratory analysis, we also tested the alternative hypothesis that the N-3 effect involves more effective task shielding, which would be reflected in reduced congruency effects in trials following ABA, relative to trials following CBA; congruency effects did not differ between these conditions. Taken together, we can rule out two potential explanations of the N-3 effect: Neither is this effect due to enhanced task preparation, nor to more effective task shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We would like to thank an anonymous reviewer for pointing this out.

References

  • Astle, D. E., Jackson, G. M., & Swainson, R. (2012). Two measures of task-specific inhibition. The Quarterly Journal of Experimental Psychology, 65, 233–251.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    Article  PubMed  Google Scholar 

  • Bugg, J. M., & Braver, T. S. (2016). Proactive control of irrelevant task rules during cued task switching. Psychological Research Psychologische Forschung, 80, 860–876.

    Article  PubMed  Google Scholar 

  • Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014a). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology, 5, 1001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014b). The congruency sequence effect 3.0: A critical test of conflict adaptation. PLoS One, 9(10), e110462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, and Behavioral Neuroscience, 7, 380–390.

    Article  Google Scholar 

  • Egner, T. (2017). Conflict adaptation: Past, present, and future of the congruency sequence effect as an index of cognitive control. In T. Egner (Ed.), The Wiley handbook of cognitive control (pp. 64–78). Oxford: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Fischer, R., Gottschalk, C., & Dreisbach, G. (2014). Context-sensitive adjustment of cognitive control in dual-task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 399–416.

    PubMed  Google Scholar 

  • Fischer, R., & Hommel, B. (2012). Deep thinking increases task-set shielding and reduces shifting flexibility in dual-task performance. Cognition, 123, 303–307.

    Article  PubMed  Google Scholar 

  • Gade, M., Schuch, S., Druey, M., & Koch, I. (2014). Inhibitory control in task switching. In J. A. Grange & G. Houghton (Eds.), Task switching and cognitive control (pp. 137–159). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 331–355). Cambridge, MA: MIT Press.

    Google Scholar 

  • Goschke, T. (2013). Volition in action: Intentions, control dilemmas and the dynamic regulation of cognitive intentional control. In W. Prinz, A. Beisert & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 409–434). Cambridge, MA: MIT Press.

    Google Scholar 

  • Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403–423.

    Article  PubMed  Google Scholar 

  • Grange, J. A., & Houghton, G. (2014). Task switching and cognitive control—an introduction. In J. A. Grange & G. Houghton (Eds.), Task switching and cognitive control (pp. 1–26). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Karayanidis, F., Mansfield, E. L., Galloway, K. L., Smith, J. L., Provost, A., & Heathcote, A. (2009). Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cognitive, Affective and Behavioral Neuroscience, 9, 202–215.

    Article  PubMed  Google Scholar 

  • Katzir, M., Ori, B., & Meiran, N. (2018). “Optimal suppression” as a solution to the paradoxical cost of multitasking: Examination of suppression specificity in task switching. Psychological Research Psychologische Forschung, 82, 24–39.

    Article  PubMed  Google Scholar 

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—a review. Psychological Bulletin, 136, 849–874.

    Article  PubMed  Google Scholar 

  • Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching—a review. Psychonomic Bulletin and Review, 17, 1–14.

    Article  PubMed  Google Scholar 

  • Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking–an integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583.

    Article  PubMed  Google Scholar 

  • Longman, C. S., Lavric, A., Munteanu, C., & Monsell, S. (2014). Attentional inertia and delayed orienting of spatial attention in task-switching. Journal of Experimental Psychology: Human Perception and Performance, 40, 1580–1602.

    PubMed  Google Scholar 

  • Madden, D. J., Spaniol, J., Costello, M. C., Bucur, B., White, L. E., Cabeza, R., Davis, S. W., Dennis, N. A., Provenzale, J. M., & Huettel, S. A. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. Journal of Cognitive Neuroscience, 21, 289–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr, U. (2007). Inhibition of task sets. In D. S. Gorfein & C. M. MacLeod (Eds.), Inhibition in cognition (pp. 27–44). Washington D.C.: American Psychological Association.

    Chapter  Google Scholar 

  • Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26.

    Article  Google Scholar 

  • Meiran, N. (2000). Modeling cognitive control in task-switching. Psychological Research Psychologische Forschung, 63, 234–249.

    Article  PubMed  Google Scholar 

  • Meiran, N., Hsieh, S., & Dimov, E. (2010). Resolving task rule incongruence during task switching by competitor rule suppression. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 992–1002.

    PubMed  Google Scholar 

  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20, 260–281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Article  Google Scholar 

  • Scheil, J., & Kleinsorge, T. (2014). N-2 repetition costs depend on preparation in trials n-1 and n-2. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 865–872.

    PubMed  Google Scholar 

  • Schmiedek, F., Oberauer, K., Wilhelm, O., Süss, H. M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136, 414–429.

    Article  Google Scholar 

  • Schmitz, F., & Voss, A. (2012). Decomposing task-switching costs with the diffusion model. Journal of Experimental Psychology: Human Perception and Performance, 38, 222–250.

    PubMed  Google Scholar 

  • Schmitz, F., & Voss, A. (2014). Components of task switching: A closer look at task switching and cue switching. Acta Psychologica, 151, 184–196.

    Article  PubMed  Google Scholar 

  • Schneider, D. W. (2014). Modeling graded response congruency effects in task switching. Acta Psychologica, 153, 160–168.

    Article  PubMed  Google Scholar 

  • Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105.

    PubMed  Google Scholar 

  • Schuch, S. (2016). Task inhibition and response inhibition in older versus younger adults: A diffusion model analysis. Frontiers in Psychology, 7, 1722.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuch, S., & Grange, J. A. (2015). The effect of N-3 on N-2 repetition costs in task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 760–767.

    PubMed  Google Scholar 

  • Schuch, S., & Konrad, K. (2017). Investigating task inhibition in children versus adults: A diffusion model analysis. Journal of Experimental Child Psychology, 156, 143–167.

    Article  PubMed  Google Scholar 

  • Schuch, S., Werheid, K., & Koch, I. (2012). Flexible and inflexible task sets: Asymmetric interference when switching between emotional expression, sex, and age classification of perceived faces. The Quarterly Journal of Experimental Psychology, 65, 994–1005.

    Article  PubMed  Google Scholar 

  • Sudevan, P., & Taylor, D. A. (1987). The cueing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89–103.

    PubMed  Google Scholar 

  • Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39, 767–775.

    Article  PubMed  Google Scholar 

  • Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analysis: A tutorial based on fast-dm-30. Frontiers in Psychology, 6, 336.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research/Stefanie Schuch was supported by a Grant within the Priority Program, SPP 1772 from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant No. SCHU 3046/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Schuch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuch, S., Grange, J.A. Increased cognitive control after task conflict? Investigating the N-3 effect in task switching. Psychological Research 83, 1703–1721 (2019). https://doi.org/10.1007/s00426-018-1025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1025-4

Navigation