Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2017

30-03-2016 | Original Article

Simple reaction time and size–distance integration in virtual 3D space

Auteurs: Thorsten Plewan, Gerhard Rinkenauer

Gepubliceerd in: Psychological Research | Uitgave 3/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Simple reaction time to visual stimuli depends on several stimulus properties. Recently, converging evidence showed that larger stimulus size evokes faster reactions and that this effect seemingly depends on the stimulus’ perceived size rather than on physical stimulus properties. Size–distance scaling usually is regarded as the main functional mechanism underlying size perception. Yet, the role of stimulus depth (distance to a target) has often been neglected in previous studies. Hence, in the present investigation, stimuli were generated using stereo head mounted displays to manipulate stimulus depth. In Experiment 1, a large or small target was presented within the center of a reference plane, either in the same depth plane or displaced (near, far) while participants had to perform a simple reaction time task. At the same time, the target was modulated such that either retinal size was constant or variable across depth planes. In Experiments 2 and 3 the reference plane was shifted along with the target (blocked or on a trial-by-trial basis), while retinal size modulation was equal to Experiment 1. As expected, participants reacted faster to physically larger targets. Also Experiment 1 revealed faster reaction times for closer targets, while the commonly described connection between perceived size (i.e., size–distance scaling) was not apparent in any experiment. Thus, unlike past findings using a virtual three-dimensional task-setting (as induced by binocular disparity) reaction times are not affected by variations of perceived stimulus size.
Literatuur
go back to reference Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379–384.CrossRefPubMed Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379–384.CrossRefPubMed
go back to reference Balota, D. A., & Yap, M. J. (2011). moving beyond the mean in studies of mental chronometry the power of response time distributional analyses. Current Directions in Psychological Science, 20, 160–166.CrossRef Balota, D. A., & Yap, M. J. (2011). moving beyond the mean in studies of mental chronometry the power of response time distributional analyses. Current Directions in Psychological Science, 20, 160–166.CrossRef
go back to reference Blake, R., Sloane, M., & Fox, R. (1981). Further developments in binocular summation. Perception and Psychophysics, 30, 266–276.CrossRefPubMed Blake, R., Sloane, M., & Fox, R. (1981). Further developments in binocular summation. Perception and Psychophysics, 30, 266–276.CrossRefPubMed
go back to reference Broggin, E., Savazzi, S., & Marzi, C. A. (2012). Similar effects of visual perception and imagery on simple reaction time. Quarterly Journal of Experimental Psychology (2006), 65, 151–164. Broggin, E., Savazzi, S., & Marzi, C. A. (2012). Similar effects of visual perception and imagery on simple reaction time. Quarterly Journal of Experimental Psychology (2006), 65, 151–164.
go back to reference Cattell, J. M. (1886). The influence of the intensity of the stimulus on the length of the reaction time. Brain, 8, 512–515.CrossRef Cattell, J. M. (1886). The influence of the intensity of the stimulus on the length of the reaction time. Brain, 8, 512–515.CrossRef
go back to reference Chen, Q., Weidner, R., Vossel, S., Weiss, P. H., & Fink, G. R. (2012). Neural mechanisms of attentional reorienting in three-dimensional space. The Journal of Neuroscience, 32, 13352–13362.CrossRefPubMed Chen, Q., Weidner, R., Vossel, S., Weiss, P. H., & Fink, G. R. (2012). Neural mechanisms of attentional reorienting in three-dimensional space. The Journal of Neuroscience, 32, 13352–13362.CrossRefPubMed
go back to reference de Gawryszewski, L. G., Riggio, L., Rizzolatti, G., & Umiltá, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25, 19–29.CrossRef de Gawryszewski, L. G., Riggio, L., Rizzolatti, G., & Umiltá, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25, 19–29.CrossRef
go back to reference Dent, K., Braithwaite, J. J., He, X., & Humphreys, G. W. (2012). Integrating space and time in visual search: how the preview benefit is modulated by stereoscopic depth. Vision Research, 65, 45–61.CrossRefPubMed Dent, K., Braithwaite, J. J., He, X., & Humphreys, G. W. (2012). Integrating space and time in visual search: how the preview benefit is modulated by stereoscopic depth. Vision Research, 65, 45–61.CrossRefPubMed
go back to reference Downing, C. J., & Pinker, S. (1985). The Spatial Structure of Visual Attention. In M. I. Posner & O. S. Marin (Eds.), Mechanisms of Attention: Attention and Performance XI (pp. 171–187). Hillsdale: Erlbaum. Downing, C. J., & Pinker, S. (1985). The Spatial Structure of Visual Attention. In M. I. Posner & O. S. Marin (Eds.), Mechanisms of Attention: Attention and Performance XI (pp. 171–187). Hillsdale: Erlbaum.
go back to reference Epstein, W., Park, J., & Casey, A. (1961). The current status of the size-distance hypotheses. Psychological Bulletin, 58, 491–514.CrossRefPubMed Epstein, W., Park, J., & Casey, A. (1961). The current status of the size-distance hypotheses. Psychological Bulletin, 58, 491–514.CrossRefPubMed
go back to reference Finlayson, N. J., & Grove, P. M. (2015). Visual search is influenced by 3D spatial layout. Attention, Perception, & Psychophysics, 77, 2322–2330.CrossRef Finlayson, N. J., & Grove, P. M. (2015). Visual search is influenced by 3D spatial layout. Attention, Perception, & Psychophysics, 77, 2322–2330.CrossRef
go back to reference Finlayson, N. J., Remington, R. W., & Grove, P. M. (2012). The role of presentation method and depth singletons in visual search for objects moving in depth. Journal of Vision, 12, 13.CrossRefPubMed Finlayson, N. J., Remington, R. W., & Grove, P. M. (2012). The role of presentation method and depth singletons in visual search for objects moving in depth. Journal of Vision, 12, 13.CrossRefPubMed
go back to reference Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception and Psychophysics, 65, 999–1010.CrossRefPubMed Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception and Psychophysics, 65, 999–1010.CrossRefPubMed
go back to reference Gilliland, K., & Haines, R. F. (1975). Binocular summation and peripheral visual response time. American Journal of Optometry & Physiological Optics, 52, 834–839.CrossRef Gilliland, K., & Haines, R. F. (1975). Binocular summation and peripheral visual response time. American Journal of Optometry & Physiological Optics, 52, 834–839.CrossRef
go back to reference Goldstein, E. (2013). Sensation and perception. Cengage Learning. Goldstein, E. (2013). Sensation and perception. Cengage Learning.
go back to reference Gregory, R. L. (1963). Distortion of Visual Space as Inappropriate Constancy Scaling. Nature, 199, 678–680.CrossRefPubMed Gregory, R. L. (1963). Distortion of Visual Space as Inappropriate Constancy Scaling. Nature, 199, 678–680.CrossRefPubMed
go back to reference Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society B: Biological Sciences, 352, 1121–1127.CrossRef Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society B: Biological Sciences, 352, 1121–1127.CrossRef
go back to reference Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11, 1–21.CrossRef Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11, 1–21.CrossRef
go back to reference Jainta, S., Blythe, H. I., & Liversedge, S. P. (2014). Binocular Advantages in Reading. Current Biology, 24, 526–530.CrossRefPubMed Jainta, S., Blythe, H. I., & Liversedge, S. P. (2014). Binocular Advantages in Reading. Current Biology, 24, 526–530.CrossRefPubMed
go back to reference Knapp, J. M., & Loomis, J. M. (2004). Limited Field of View of Head-Mounted Displays Is Not the Cause of Distance Underestimation in Virtual Environments. Presence: Teleoperators and Virtual Environments, 13, 572–577.CrossRef Knapp, J. M., & Loomis, J. M. (2004). Limited Field of View of Head-Mounted Displays Is Not the Cause of Distance Underestimation in Virtual Environments. Presence: Teleoperators and Virtual Environments, 13, 572–577.CrossRef
go back to reference Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4, 35–45.CrossRef Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4, 35–45.CrossRef
go back to reference Luce, R. D. (1986). Response Times. Oxford University Press. Luce, R. D. (1986). Response Times. Oxford University Press.
go back to reference Marzi, C. A., Mancini, F., Metitieri, T., & Savazzi, S. (2006). Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia, 44, 1489–1495.CrossRefPubMed Marzi, C. A., Mancini, F., Metitieri, T., & Savazzi, S. (2006). Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia, 44, 1489–1495.CrossRefPubMed
go back to reference Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychonomic Bulletin & Review, 16, 798–817.CrossRef Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychonomic Bulletin & Review, 16, 798–817.CrossRef
go back to reference Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.CrossRef Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.CrossRef
go back to reference Murgia, A., & Sharkey, P. M. (2009). Estimation of distances in virtual environments using size constancy. The International Journal of Virtual Reality, 8, 67–74. Murgia, A., & Sharkey, P. M. (2009). Estimation of distances in virtual environments using size constancy. The International Journal of Virtual Reality, 8, 67–74.
go back to reference Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9, 429–434.CrossRefPubMed Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9, 429–434.CrossRefPubMed
go back to reference Naceri, A., Chellali, R., Dionnet, F., & Toma, S. (2010). Depth perception within virtual environments: comparison between two display technologies. International Journal On Advances in Intelligent Systems, 3, 51–64. Naceri, A., Chellali, R., Dionnet, F., & Toma, S. (2010). Depth perception within virtual environments: comparison between two display technologies. International Journal On Advances in Intelligent Systems, 3, 51–64.
go back to reference Neri, P., Bridge, H., & Heeger, D. J. (2004). Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology, 92, 1880–1891.CrossRefPubMed Neri, P., Bridge, H., & Heeger, D. J. (2004). Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology, 92, 1880–1891.CrossRefPubMed
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMed Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMed
go back to reference Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychological Methods, 8, 434–447.CrossRefPubMed Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychological Methods, 8, 434–447.CrossRefPubMed
go back to reference Parker, A. J. (2007). Binocular depth perception and the cerebral cortex. Nature Reviews Neuroscience, 8, 379–391.CrossRefPubMed Parker, A. J. (2007). Binocular depth perception and the cerebral cortex. Nature Reviews Neuroscience, 8, 379–391.CrossRefPubMed
go back to reference Parks, N. A., & Corballis, P. M. (2006). Attending to depth: electrophysiological evidence for a viewer-centered asymmetry. NeuroReport, 17, 643–647.CrossRefPubMed Parks, N. A., & Corballis, P. M. (2006). Attending to depth: electrophysiological evidence for a viewer-centered asymmetry. NeuroReport, 17, 643–647.CrossRefPubMed
go back to reference Plewan, T., Weidner, R., & Fink, G. R. (2012). The influence of stimulus duration on visual illusions and simple reaction time. Experimental Brain Research, 223, 367–375.CrossRefPubMed Plewan, T., Weidner, R., & Fink, G. R. (2012). The influence of stimulus duration on visual illusions and simple reaction time. Experimental Brain Research, 223, 367–375.CrossRefPubMed
go back to reference Ponzo, M. (1928). Urteilstäuschungen über Mengen. Archiv Für Die Gesamte Psychologie, 65, 129–162. Ponzo, M. (1928). Urteilstäuschungen über Mengen. Archiv Für Die Gesamte Psychologie, 65, 129–162.
go back to reference Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.CrossRefPubMed Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.CrossRefPubMed
go back to reference Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The Perception of Egocentric Distances in Virtual Environments - A Review. ACM Computing Surveys, 46, 23:1–23:40. Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The Perception of Egocentric Distances in Virtual Environments - A Review. ACM Computing Surveys, 46, 23:1–23:40.
go back to reference Ross, H. E., & Plug, C. (1998). The history of size constancy and size illusions. In V. Walsh & J. Kulikowski (Eds.), Perceptual Constancy: Why Things Look as they Do (pp. 499–528). Cambridge: Cambridge University Press. Ross, H. E., & Plug, C. (1998). The history of size constancy and size illusions. In V. Walsh & J. Kulikowski (Eds.), Perceptual Constancy: Why Things Look as they Do (pp. 499–528). Cambridge: Cambridge University Press.
go back to reference Savazzi, S., Emanuele, B., Scalf, P., & Beck, D. (2012). Reaction times and perceptual adjustments are sensitive to the illusory distortion of space. Experimental Brain Research, 218, 119–128.CrossRefPubMed Savazzi, S., Emanuele, B., Scalf, P., & Beck, D. (2012). Reaction times and perceptual adjustments are sensitive to the illusory distortion of space. Experimental Brain Research, 218, 119–128.CrossRefPubMed
go back to reference Schiffman, H. R. (1967). Size-Estimation of Familiar Objects under Informative and Reduced Conditions of Viewing. The American Journal of Psychology, 80, 229–235.CrossRefPubMed Schiffman, H. R. (1967). Size-Estimation of Familiar Objects under Informative and Reduced Conditions of Viewing. The American Journal of Psychology, 80, 229–235.CrossRefPubMed
go back to reference Shulman, G. L., Remington, R. W., & McLean, J. P. (1979). Moving attention through visual space. Journal of Experimental Psychology: Human Perception and Performance, 5, 522–526.PubMed Shulman, G. L., Remington, R. W., & McLean, J. P. (1979). Moving attention through visual space. Journal of Experimental Psychology: Human Perception and Performance, 5, 522–526.PubMed
go back to reference Slack, C. W. (1956). Familiar size as a cue to size in the presence of conflicting cues. Journal of Experimental Psychology, 52, 194–198.CrossRefPubMed Slack, C. W. (1956). Familiar size as a cue to size in the presence of conflicting cues. Journal of Experimental Psychology, 52, 194–198.CrossRefPubMed
go back to reference Sperandio, I., Chouinard, P. A., & Goodale, M. A. (2012). Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 15, 540–542.CrossRefPubMed Sperandio, I., Chouinard, P. A., & Goodale, M. A. (2012). Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 15, 540–542.CrossRefPubMed
go back to reference Sperandio, I., Savazzi, S., Gregory, R. L., & Marzi, C. A. (2009). Visual reaction time and size constancy. Perception, 38, 1601–1609.CrossRefPubMed Sperandio, I., Savazzi, S., Gregory, R. L., & Marzi, C. A. (2009). Visual reaction time and size constancy. Perception, 38, 1601–1609.CrossRefPubMed
go back to reference Sperandio, I., Savazzi, S., & Marzi, C. A. (2010). Is simple reaction time affected by visual illusions? Experimental Brain Research, 201, 345–350.CrossRefPubMed Sperandio, I., Savazzi, S., & Marzi, C. A. (2010). Is simple reaction time affected by visual illusions? Experimental Brain Research, 201, 345–350.CrossRefPubMed
go back to reference Teichner, W. H., & Krebs, M. J. (1972). Laws of the simple visual reaction time. Psychological Review, 79, 344–358.CrossRefPubMed Teichner, W. H., & Krebs, M. J. (1972). Laws of the simple visual reaction time. Psychological Review, 79, 344–358.CrossRefPubMed
go back to reference Theeuwes, J., Atchley, P., & Kramer, A. F. (1998). Attentional control within 3-D space. Journal of Experimental Psychology: Human Perception and Performance, 24, 1476–1485.PubMed Theeuwes, J., Atchley, P., & Kramer, A. F. (1998). Attentional control within 3-D space. Journal of Experimental Psychology: Human Perception and Performance, 24, 1476–1485.PubMed
go back to reference Ulrich, R., Rinkenauer, G., & Miller, J. (1998). Effects of stimulus duration and intensity on simple reaction time and response force. Journal of Experimental Psychology Human Perception and Performance, 24, 915–928.CrossRefPubMed Ulrich, R., Rinkenauer, G., & Miller, J. (1998). Effects of stimulus duration and intensity on simple reaction time and response force. Journal of Experimental Psychology Human Perception and Performance, 24, 915–928.CrossRefPubMed
go back to reference Wakayama, A., Matsumoto, C., Ohmure, K., Inase, M., & Shimomura, Y. (2011). Influence of target size and eccentricity on binocular summation of reaction time in kinetic perimetry. Vision Research, 51, 174–178.CrossRefPubMed Wakayama, A., Matsumoto, C., Ohmure, K., Inase, M., & Shimomura, Y. (2011). Influence of target size and eccentricity on binocular summation of reaction time in kinetic perimetry. Vision Research, 51, 174–178.CrossRefPubMed
go back to reference Weidner, R., Plewan, T., Chen, Q., Buchner, A., Weiss, P. H., & Fink, G. R. (2014). The Moon Illusion and Size-Distance Scaling—Evidence for Shared Neural Patterns. Journal of Cognitive Neuroscience, 26, 1871–1882.CrossRefPubMed Weidner, R., Plewan, T., Chen, Q., Buchner, A., Weiss, P. H., & Fink, G. R. (2014). The Moon Illusion and Size-Distance Scaling—Evidence for Shared Neural Patterns. Journal of Cognitive Neuroscience, 26, 1871–1882.CrossRefPubMed
go back to reference Whelan, R. (2010). Effective analysis of reaction time data. The Psychological Record, 58, 475–482. Whelan, R. (2010). Effective analysis of reaction time data. The Psychological Record, 58, 475–482.
Metagegevens
Titel
Simple reaction time and size–distance integration in virtual 3D space
Auteurs
Thorsten Plewan
Gerhard Rinkenauer
Publicatiedatum
30-03-2016
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-016-0769-y

Andere artikelen Uitgave 3/2017

Psychological Research 3/2017 Naar de uitgave