Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2016

23-12-2014 | Review

A review of ideomotor approaches to perception, cognition, action, and language: advancing a cultural recycling hypothesis

Auteurs: Arnaud Badets, Iring Koch, Andrea M. Philipp

Gepubliceerd in: Psychological Research | Uitgave 1/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The term “cultural recycling” derives from the neuronal recycling hypothesis, which suggests that representations of cultural inventions like written words, Arabic numbers, or tools can occupy brain areas dedicated to other functions. In the present selective review article, we propose a recycling hypothesis for the ideomotor mechanism. The ideomotor approach assumes that motor actions are controlled by the anticipation of the expected perceptual consequences that they aim to generate in the environment. Arguably, such action–perception mechanisms contribute to motor behaviour for human and non-human animals since millions of years. However, recent empirical studies suggest that the ideomotor mechanism can also contribute to word processing, number representation, and arithmetic. For instance, it has been shown that the anticipatory simulation of abstract semantics, like the numerical quantitative value of three items can prime processing of the associated Arabic number “3”. Arabic numbers, words, or tools represent cultural inventions, so that, from a theoretical perspective, we suggest an ideomotor recycling hypothesis for the interaction with such artefacts. In this view, the ideomotor mechanism spreads its influence to other functions beyond motor control, and is recycled to flexibly adapt different human behaviours towards dealing with more abstract concepts.
Literatuur
go back to reference Anderson, M. L. (2010). Neural reuse: a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313.PubMedCrossRef Anderson, M. L. (2010). Neural reuse: a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313.PubMedCrossRef
go back to reference Anderson, M. L., & Penner-Wilger, M. (2013). Neural reuse in the evolution and development of the brain: evidence for developmental homology? Developmental Psychobiology, 55, 42–51.PubMedCrossRef Anderson, M. L., & Penner-Wilger, M. (2013). Neural reuse in the evolution and development of the brain: evidence for developmental homology? Developmental Psychobiology, 55, 42–51.PubMedCrossRef
go back to reference Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. NeuroReport, 15, 2773–2777.PubMed Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. NeuroReport, 15, 2773–2777.PubMed
go back to reference Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62, 1520–1528.PubMedCrossRef Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62, 1520–1528.PubMedCrossRef
go back to reference Andres, M., Olivier, E., & Badets, A. (2008). Action, words and numbers: a motor contribution to semantic processing? Current Directions in Psychological Science, 17(5), 313–317.CrossRef Andres, M., Olivier, E., & Badets, A. (2008). Action, words and numbers: a motor contribution to semantic processing? Current Directions in Psychological Science, 17(5), 313–317.CrossRef
go back to reference Badets, A. (2013). Semantic sides of three-dimensional space representation. Behavioral and Brain Sciences, 36, 543.PubMedCrossRef Badets, A. (2013). Semantic sides of three-dimensional space representation. Behavioral and Brain Sciences, 36, 543.PubMedCrossRef
go back to reference Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180, 525–534.PubMedCrossRef Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180, 525–534.PubMedCrossRef
go back to reference Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60, 34–43.PubMedCrossRef Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60, 34–43.PubMedCrossRef
go back to reference Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115, 46–53.PubMedCrossRef Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115, 46–53.PubMedCrossRef
go back to reference Badets, A., & Pesenti, M. (2011). Finger–number interaction: an ideomotor account. Experimental Psychology, 58, 287–292.PubMedCrossRef Badets, A., & Pesenti, M. (2011). Finger–number interaction: an ideomotor account. Experimental Psychology, 58, 287–292.PubMedCrossRef
go back to reference Badets, A., Pesenti, M., & Olivier, E. (2010). Response–effect compatibility of finger-numeral configurations in arithmetical context. The Quarterly Journal of Experimental Psychology, 63, 16–22.PubMedCrossRef Badets, A., Pesenti, M., & Olivier, E. (2010). Response–effect compatibility of finger-numeral configurations in arithmetical context. The Quarterly Journal of Experimental Psychology, 63, 16–22.PubMedCrossRef
go back to reference Baroody, A. J. (1987). Children’s mathematical thinking: a developmental framework for preschool, primary and special education teachers. New York, NY: Teacher’s College Press. Baroody, A. J. (1987). Children’s mathematical thinking: a developmental framework for preschool, primary and special education teachers. New York, NY: Teacher’s College Press.
go back to reference Beck, B. B. (1980). Animal tool use behavior: The use and manufacture of tools by animals. New York: Garland STPM Press. Beck, B. B. (1980). Animal tool use behavior: The use and manufacture of tools by animals. New York: Garland STPM Press.
go back to reference Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17, 89–98.PubMedCrossRef Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17, 89–98.PubMedCrossRef
go back to reference Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.PubMedPubMedCentralCrossRef Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.PubMedPubMedCentralCrossRef
go back to reference Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience, 11, 3276–3286.PubMedCrossRef Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience, 11, 3276–3286.PubMedCrossRef
go back to reference Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B, 364, 1831–1840.CrossRef Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B, 364, 1831–1840.CrossRef
go back to reference Butterworth, B. (1999). The mathematical brain. Macmillan. Butterworth, B. (1999). The mathematical brain. Macmillan.
go back to reference Caligiore, D., & Fischer, M. H. (2013). Vision, action and language unified through embodiment. Psychological Research, 77, 1–6.PubMedCrossRef Caligiore, D., & Fischer, M. H. (2013). Vision, action and language unified through embodiment. Psychological Research, 77, 1–6.PubMedCrossRef
go back to reference Chiou, R. Y., Chang, E. C., Tzeng, O. J. L., & Wu, D. H. (2009). The common magnitude code underlying numerical and size processing for action but not for perception. Experimental Brain Research, 194, 553–562.PubMedCrossRef Chiou, R. Y., Chang, E. C., Tzeng, O. J. L., & Wu, D. H. (2009). The common magnitude code underlying numerical and size processing for action but not for perception. Experimental Brain Research, 194, 553–562.PubMedCrossRef
go back to reference Cisek, P., & Kalaska, J. F. (2001). Common codes for situated interaction. Behavioral and Brain Sciences, 24, 883–884.CrossRef Cisek, P., & Kalaska, J. F. (2001). Common codes for situated interaction. Behavioral and Brain Sciences, 24, 883–884.CrossRef
go back to reference Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. NeuroImage, 22, 466–476.PubMedCrossRef Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. NeuroImage, 22, 466–476.PubMedCrossRef
go back to reference Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI evidence for a ‘‘parietal reach region” in the human brain. Experimental Brain Research, 153, 140–145.PubMedCrossRef Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI evidence for a ‘‘parietal reach region” in the human brain. Experimental Brain Research, 153, 140–145.PubMedCrossRef
go back to reference Corballis, M. C. (2013). Mental time travel: a case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6.PubMedCrossRef Corballis, M. C. (2013). Mental time travel: a case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6.PubMedCrossRef
go back to reference Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153, 180–189.PubMedCrossRef Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153, 180–189.PubMedCrossRef
go back to reference Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.CrossRef Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.CrossRef
go back to reference Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The ‘‘neuronal recycling’’ hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press. Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The ‘‘neuronal recycling’’ hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press.
go back to reference Dehaene, S. (2007). Les neurones de la lecture. Odile Jacob. Dehaene, S. (2007). Les neurones de la lecture. Odile Jacob.
go back to reference Dehaene, S. (2009). Reading in the brain. Penguin Viking. Dehaene, S. (2009). Reading in the brain. Penguin Viking.
go back to reference Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.PubMedCrossRef Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.PubMedCrossRef
go back to reference Dehaene, S., Tzourio, N., Frak, F., Raynaud, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia, 34, 1097–1106.PubMedCrossRef Dehaene, S., Tzourio, N., Frak, F., Raynaud, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia, 34, 1097–1106.PubMedCrossRef
go back to reference Di Luca, S., Granà, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology, 59, 1648–1663.PubMedCrossRef Di Luca, S., Granà, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology, 59, 1648–1663.PubMedCrossRef
go back to reference Di Luca, S., Lefèvre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations. Cognition, 117, 95–100.PubMedCrossRef Di Luca, S., Lefèvre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations. Cognition, 117, 95–100.PubMedCrossRef
go back to reference Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44, 359–367.PubMedCrossRef Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44, 359–367.PubMedCrossRef
go back to reference Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.PubMed Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.PubMed
go back to reference Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. doi:10.1038/nn1066. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. doi:10.​1038/​nn1066.
go back to reference Gallese, V. (2008). Mirror neurons and the social nature of language: the neural exploitation hypothesis. Social Neuroscience, 3, 317–333.PubMedCrossRef Gallese, V. (2008). Mirror neurons and the social nature of language: the neural exploitation hypothesis. Social Neuroscience, 3, 317–333.PubMedCrossRef
go back to reference Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.PubMedCrossRef Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.PubMedCrossRef
go back to reference Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8, 8–11.PubMedCrossRef Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8, 8–11.PubMedCrossRef
go back to reference Gibson, K. R. (1993). Generative interplay between technical capacities, social relations, imitation and cognition. In K. R. Gibson & T. Ingold (Eds.), Tools, language and cognition in human evolution (pp. 251–269). New York: Cambridge University Press. Gibson, K. R. (1993). Generative interplay between technical capacities, social relations, imitation and cognition. In K. R. Gibson & T. Ingold (Eds.), Tools, language and cognition in human evolution (pp. 251–269). New York: Cambridge University Press.
go back to reference Gracia-Bafalluy, M., & Noël, M. P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44, 368–375.PubMedCrossRef Gracia-Bafalluy, M., & Noël, M. P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44, 368–375.PubMedCrossRef
go back to reference Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.PubMedCrossRef Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.PubMedCrossRef
go back to reference Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133–1137.PubMedCrossRef Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133–1137.PubMedCrossRef
go back to reference Hartsuiker, R. J., & Pickering, M. J. (2001). A common framework for language comprehension and language production? Behavioral and Brain Sciences, 24, 887–888. Hartsuiker, R. J., & Pickering, M. J. (2001). A common framework for language comprehension and language production? Behavioral and Brain Sciences, 24, 887–888.
go back to reference Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. Quarterly Journal of Experimental Psychology, 62(2), 219–227.CrossRef Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. Quarterly Journal of Experimental Psychology, 62(2), 219–227.CrossRef
go back to reference Hommel, B., Alonso, D., & Fuentes, L. J. (2003). Acquisition and generalization of action effects. Visual Cognition, 10, 965–986.CrossRef Hommel, B., Alonso, D., & Fuentes, L. J. (2003). Acquisition and generalization of action effects. Visual Cognition, 10, 965–986.CrossRef
go back to reference Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioural and Brain Sciences, 24, 849–878.CrossRef Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioural and Brain Sciences, 24, 849–878.CrossRef
go back to reference Hubbard, J., Gazzaley, A., & Morsella, E. (2011). Traditional response interference from anticipated action outcomes: a response-effect compatibility paradigm. Acta Psychologia, 138, 106–110.CrossRef Hubbard, J., Gazzaley, A., & Morsella, E. (2011). Traditional response interference from anticipated action outcomes: a response-effect compatibility paradigm. Acta Psychologia, 138, 106–110.CrossRef
go back to reference Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in the parietal cortex. Nature Reviews Neuroscience, 6, 435–448.PubMedCrossRef Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in the parietal cortex. Nature Reviews Neuroscience, 6, 435–448.PubMedCrossRef
go back to reference Hurley, S. L. (2008). The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31, 1–58.PubMedCrossRef Hurley, S. L. (2008). The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31, 1–58.PubMedCrossRef
go back to reference James, W. (1890). The principles of psychology (Vol. 2). New York: Dover Publications.CrossRef James, W. (1890). The principles of psychology (Vol. 2). New York: Dover Publications.CrossRef
go back to reference Kashima, Y., Bekkering, H., & Kashima, E. S. (2013). Communicative intentions can modulate the linguistic perception-action link. Behavioral and Brain Sciences, 36, 33–34.CrossRef Kashima, Y., Bekkering, H., & Kashima, E. S. (2013). Communicative intentions can modulate the linguistic perception-action link. Behavioral and Brain Sciences, 36, 33–34.CrossRef
go back to reference Keller, P. E., & Koch, I. (2006). Exogenous and endogenous response priming with auditory stimuli. Advances in Cognitive Psychology, 2, 269–276.CrossRef Keller, P. E., & Koch, I. (2006). Exogenous and endogenous response priming with auditory stimuli. Advances in Cognitive Psychology, 2, 269–276.CrossRef
go back to reference Koch, I., Keller, P., & Prinz, W. (2004). The ideomotor approach to action control: implications for skilled performance. International Journal of Sport and Exercise Psychology, 2, 362–375.CrossRef Koch, I., Keller, P., & Prinz, W. (2004). The ideomotor approach to action control: implications for skilled performance. International Journal of Sport and Exercise Psychology, 2, 362–375.CrossRef
go back to reference Koch, I., & Kunde, W. (2002). Verbal response–effect compatibility. Memory and Cognition, 30, 1297–1303.PubMedCrossRef Koch, I., & Kunde, W. (2002). Verbal response–effect compatibility. Memory and Cognition, 30, 1297–1303.PubMedCrossRef
go back to reference Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility–a model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRef Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility–a model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRef
go back to reference Kunde, W. (2001). Response–effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394.PubMed Kunde, W. (2001). Response–effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394.PubMed
go back to reference Kunde, W., Elsner, K., & Kiesel, A. (2007a). No anticipation–no action: the role of anticipation in action and perception. Cognitive Processing, 8, 71–78.PubMedCrossRef Kunde, W., Elsner, K., & Kiesel, A. (2007a). No anticipation–no action: the role of anticipation in action and perception. Cognitive Processing, 8, 71–78.PubMedCrossRef
go back to reference Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation, and execution of actions. Quarterly Journal of Experimental Psychology, 57A, 87–106.CrossRef Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation, and execution of actions. Quarterly Journal of Experimental Psychology, 57A, 87–106.CrossRef
go back to reference Kunde, W., Müsseler, J., & Heuer, H. (2007b). Spatial compatibility effects with tool use. Human Factors, 49, 661–670.PubMedCrossRef Kunde, W., Müsseler, J., & Heuer, H. (2007b). Spatial compatibility effects with tool use. Human Factors, 49, 661–670.PubMedCrossRef
go back to reference Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33, 1400–1409.PubMed Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33, 1400–1409.PubMed
go back to reference Massen, C., & Prinz, W. (2007). Activation of actions rules in action observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33, 1118–1130.PubMedCrossRef Massen, C., & Prinz, W. (2007). Activation of actions rules in action observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33, 1118–1130.PubMedCrossRef
go back to reference Massen, C., & Prinz, W. (2009). Movements, actions and tool-use actions: an ideomotor approach to imitation. Philosophical Transactions of the Royal Society of London. Series B, 364, 2349–2358.PubMedPubMedCentralCrossRef Massen, C., & Prinz, W. (2009). Movements, actions and tool-use actions: an ideomotor approach to imitation. Philosophical Transactions of the Royal Society of London. Series B, 364, 2349–2358.PubMedPubMedCentralCrossRef
go back to reference Meck, W. H. (1985). Postreinforcement signal-processing. Journal of Experimental Psychology: Animal Behavior Processes, 11, 52–70.PubMed Meck, W. H. (1985). Postreinforcement signal-processing. Journal of Experimental Psychology: Animal Behavior Processes, 11, 52–70.PubMed
go back to reference Melcher, T., Weidema, M., Eenhuistra, R. M., Hommel, B., & Gruber, O. (2008). The neural substrate of the ideomotor principle: an event-related fMRI analysis. NeuroImage, 39, 1274–1288.PubMedCrossRef Melcher, T., Weidema, M., Eenhuistra, R. M., Hommel, B., & Gruber, O. (2008). The neural substrate of the ideomotor principle: an event-related fMRI analysis. NeuroImage, 39, 1274–1288.PubMedCrossRef
go back to reference Meteyard, L., Rodriguez Cuadrado, S., Bahrami, B., & Vigliocco, G. (2012). Coming of age: a review of embodiment and the neuroscience of semantics. Cortex, 48, 88–804.CrossRef Meteyard, L., Rodriguez Cuadrado, S., Bahrami, B., & Vigliocco, G. (2012). Coming of age: a review of embodiment and the neuroscience of semantics. Cortex, 48, 88–804.CrossRef
go back to reference Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188, 505–515.PubMedCrossRef Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188, 505–515.PubMedCrossRef
go back to reference Nattkemper, D., Ziessler, M., & Frensch, P. A. (2010). Binding in voluntary action control. Neuroscience and Biobehavioral Reviews, 34, 1092–1101.PubMedCrossRef Nattkemper, D., Ziessler, M., & Frensch, P. A. (2010). Binding in voluntary action control. Neuroscience and Biobehavioral Reviews, 34, 1092–1101.PubMedCrossRef
go back to reference Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.PubMedCrossRef Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.PubMedCrossRef
go back to reference Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101, 7457–7462.PubMedPubMedCentralCrossRef Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101, 7457–7462.PubMedPubMedCentralCrossRef
go back to reference Osiurak, F. (2014). What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, Space, Time and Effort. Neuropsychology Review, 24, 88–115.PubMedCrossRef Osiurak, F. (2014). What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, Space, Time and Effort. Neuropsychology Review, 24, 88–115.PubMedCrossRef
go back to reference Osiurak, F., & Badets, A. (2014). Pliers, not fingers: tool-action effect in a motor intention paradigm. Cognition, 130, 66–73.PubMedCrossRef Osiurak, F., & Badets, A. (2014). Pliers, not fingers: tool-action effect in a motor intention paradigm. Cognition, 130, 66–73.PubMedCrossRef
go back to reference Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrate of Arabic number processing, numerical comparison and simple addition: a PET study. Journal of Cognitive Neuroscience, 121, 461–479.CrossRef Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrate of Arabic number processing, numerical comparison and simple addition: a PET study. Journal of Cognitive Neuroscience, 121, 461–479.CrossRef
go back to reference Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232, 847–854.PubMedCrossRef Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232, 847–854.PubMedCrossRef
go back to reference Press, C. (2011). Action observation and robotic agents: learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35, 1410–1418.PubMedCrossRef Press, C. (2011). Action observation and robotic agents: learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35, 1410–1418.PubMedCrossRef
go back to reference Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19, 473–481.PubMedCrossRef Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19, 473–481.PubMedCrossRef
go back to reference Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRef Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRef
go back to reference Prinz, W., Aschersleben, G., & Koch, I. (2009). Cognition and action. In E. Morsella, J. Bargh, & P. M. Gollwitzer (Eds.), The Psychology of Action (Vol. 2, pp. 35–71)., Mechanisms of Human Action Oxford: Oxford University Press. Prinz, W., Aschersleben, G., & Koch, I. (2009). Cognition and action. In E. Morsella, J. Bargh, & P. M. Gollwitzer (Eds.), The Psychology of Action (Vol. 2, pp. 35–71)., Mechanisms of Human Action Oxford: Oxford University Press.
go back to reference Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16, 5205–5215.PubMed Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16, 5205–5215.PubMed
go back to reference Raos, V., Umiltá, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95, 709–729.PubMedCrossRef Raos, V., Umiltá, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95, 709–729.PubMedCrossRef
go back to reference Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790.PubMedCrossRef Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790.PubMedCrossRef
go back to reference Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–194.CrossRef Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–194.CrossRef
go back to reference Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef
go back to reference Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.PubMedCrossRef Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.PubMedCrossRef
go back to reference Sawamura, H., Shima, K., & Tanji, J. (2002). Numerical representation for action in the parietal cortex of the monkey. Nature, 415, 918–922.PubMedCrossRef Sawamura, H., Shima, K., & Tanji, J. (2002). Numerical representation for action in the parietal cortex of the monkey. Nature, 415, 918–922.PubMedCrossRef
go back to reference Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.PubMedCrossRef Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.PubMedCrossRef
go back to reference Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974.PubMedCrossRef Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974.PubMedCrossRef
go back to reference Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188.PubMedCrossRef Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188.PubMedCrossRef
go back to reference Thompson, R. F., Mayers, K. S., Robertson, R. T., & Patterson, C. J. (1970). Number coding in association cortex of the cat. Science, 168, 271–273.PubMedCrossRef Thompson, R. F., Mayers, K. S., Robertson, R. T., & Patterson, C. J. (1970). Number coding in association cortex of the cat. Science, 168, 271–273.PubMedCrossRef
go back to reference Umiltà, M., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. (2008). How pliers become fingers in the monkey motor system. Proceedings of the National Academy of Science, 105, 2209–2213.CrossRef Umiltà, M., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. (2008). How pliers become fingers in the monkey motor system. Proceedings of the National Academy of Science, 105, 2209–2213.CrossRef
go back to reference Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: evidence from neglect and pseudoneglect. Experimental Brain Research, 192, 561–569.PubMedCrossRef Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: evidence from neglect and pseudoneglect. Experimental Brain Research, 192, 561–569.PubMedCrossRef
go back to reference Vigneau, M., Jobard, G., Mazoyer, B., & Tzourio-Mazoyer, N. (2005). Word and non-word reading: what role for the visual word form area? NeuroImage, 27, 694–705.PubMedCrossRef Vigneau, M., Jobard, G., Mazoyer, B., & Tzourio-Mazoyer, N. (2005). Word and non-word reading: what role for the visual word form area? NeuroImage, 27, 694–705.PubMedCrossRef
go back to reference Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7, 483–488.CrossRef Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7, 483–488.CrossRef
go back to reference Waszak, F., Cardoso-Leite, P., & Hughes, G. (2012). Action effect anticipation: neurophysiological basis and functional consequences. Neuroscience and Biobehavioral Reviews, 36, 943–959.PubMedCrossRef Waszak, F., Cardoso-Leite, P., & Hughes, G. (2012). Action effect anticipation: neurophysiological basis and functional consequences. Neuroscience and Biobehavioral Reviews, 36, 943–959.PubMedCrossRef
go back to reference Waszak, F., Wascher, E., Keller, P., Koch, I., Aschersleben, G., Rosenbaum, D. A., & Prinz, W. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346–356.PubMedCrossRef Waszak, F., Wascher, E., Keller, P., Koch, I., Aschersleben, G., Rosenbaum, D. A., & Prinz, W. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346–356.PubMedCrossRef
go back to reference Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5, 487–494.PubMedCrossRef Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5, 487–494.PubMedCrossRef
go back to reference Wood, G., Nuerk, H. C., Willmes, K., & Fischer, M. H. (2008). On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525. Wood, G., Nuerk, H. C., Willmes, K., & Fischer, M. H. (2008). On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.
go back to reference Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The role of anticipation and intention in the learning of effects of self-performed actions. Psychological Research, 68, 163–175.PubMedCrossRef Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The role of anticipation and intention in the learning of effects of self-performed actions. Psychological Research, 68, 163–175.PubMedCrossRef
Metagegevens
Titel
A review of ideomotor approaches to perception, cognition, action, and language: advancing a cultural recycling hypothesis
Auteurs
Arnaud Badets
Iring Koch
Andrea M. Philipp
Publicatiedatum
23-12-2014
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-014-0643-8

Andere artikelen Uitgave 1/2016

Psychological Research 1/2016 Naar de uitgave