Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2014

01-05-2014 | Original Article

Attention effects on auditory scene analysis: insights from event-related brain potentials

Auteurs: Mona Isabel Spielmann, Erich Schröger, Sonja A. Kotz, Alexandra Bendixen

Gepubliceerd in: Psychological Research | Uitgave 3/2014

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Sounds emitted by different sources arrive at our ears as a mixture that must be disentangled before meaningful information can be retrieved. It is still a matter of debate whether this decomposition happens automatically or requires the listener’s attention. These opposite positions partly stem from different methodological approaches to the problem. We propose an integrative approach that combines the logic of previous measurements targeting either auditory stream segregation (interpreting a mixture as coming from two separate sources) or integration (interpreting a mixture as originating from only one source). By means of combined behavioral and event-related potential (ERP) measures, our paradigm has the potential to measure stream segregation and integration at the same time, providing the opportunity to obtain positive evidence of either one. This reduces the reliance on zero findings (i.e., the occurrence of stream integration in a given condition can be demonstrated directly, rather than indirectly based on the absence of empirical evidence for stream segregation, and vice versa). With this two-way approach, we systematically manipulate attention devoted to the auditory stimuli (by varying their task relevance) and to their underlying structure (by delivering perceptual tasks that require segregated or integrated percepts). ERP results based on the mismatch negativity (MMN) show no evidence for a modulation of stream integration by attention, while stream segregation results were less clear due to overlapping attention-related components in the MMN latency range. We suggest future studies combining the proposed two-way approach with some improvements in the ERP measurement of sequential stream segregation.
Literatuur
go back to reference Akeroyd, M. A., Carlyon, R. P., & Deeks, J. M. (2005). Can dichotic pitches form two streams? Journal of the Acoustical Society of America, 118, 977–981.PubMedCrossRef Akeroyd, M. A., Carlyon, R. P., & Deeks, J. M. (2005). Can dichotic pitches form two streams? Journal of the Acoustical Society of America, 118, 977–981.PubMedCrossRef
go back to reference Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38–51.PubMedCrossRef Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38–51.PubMedCrossRef
go back to reference Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122, 235–251.PubMedCentralPubMedCrossRef Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122, 235–251.PubMedCentralPubMedCrossRef
go back to reference Bendixen, A., & Andersen, S. K. (2013). Measuring target detection performance in paradigms with high event rates. Clinical Neurophysiology, 124, 928–940.PubMedCrossRef Bendixen, A., & Andersen, S. K. (2013). Measuring target detection performance in paradigms with high event rates. Clinical Neurophysiology, 124, 928–940.PubMedCrossRef
go back to reference Bregman, A. S. (1990). Auditory scene analysis. The perceptual organization of sound. Cambridge: MIT Press. Bregman, A. S. (1990). Auditory scene analysis. The perceptual organization of sound. Cambridge: MIT Press.
go back to reference Bregman, A. S. (1993). Auditory scene analysis: hearing in complex environments. In S. McAdams & E. Bigand (Eds.), Thinking in sound The cognitive psychology of human audition (pp. 10–36). Oxford: Clarendon Press.CrossRef Bregman, A. S. (1993). Auditory scene analysis: hearing in complex environments. In S. McAdams & E. Bigand (Eds.), Thinking in sound The cognitive psychology of human audition (pp. 10–36). Oxford: Clarendon Press.CrossRef
go back to reference Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89, 244–249.PubMedCrossRef Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89, 244–249.PubMedCrossRef
go back to reference Brochard, R., Drake, C., Botte, M.-C., & McAdams, S. (1999). Perceptual organization of complex auditory sequences: effect of number of simultaneous subsequences and frequency separation. Journal of Experimental Psychology: Human Perception and Performance, 25, 1742–1759.PubMed Brochard, R., Drake, C., Botte, M.-C., & McAdams, S. (1999). Perceptual organization of complex auditory sequences: effect of number of simultaneous subsequences and frequency separation. Journal of Experimental Psychology: Human Perception and Performance, 25, 1742–1759.PubMed
go back to reference Butler, R. A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. Journal of the Acoustical Society of America, 44, 945–950.PubMedCrossRef Butler, R. A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. Journal of the Acoustical Society of America, 44, 945–950.PubMedCrossRef
go back to reference Carlyon, R. P., & Cusack, R. (2005). Effects of attention on auditory perceptual organization. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.), The Neurobiology of attention (pp. 317–323). Amsterdam: Elsevier Academic Press.CrossRef Carlyon, R. P., & Cusack, R. (2005). Effects of attention on auditory perceptual organization. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.), The Neurobiology of attention (pp. 317–323). Amsterdam: Elsevier Academic Press.CrossRef
go back to reference Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27, 115–127.PubMed Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27, 115–127.PubMed
go back to reference Carlyon, R. P., Thompson, S. K., Heinrich, A., Pulvermüller, F., Davis, M. H., Shtyrov, Y., et al. (2010). Objective measures of auditory scene analysis. In E. A. Lopez-Poveda, A. R. Palmer, & R. Meddis (Eds.), The neurophysiological bases of auditory perception (pp. 507–519). New York: Springer.CrossRef Carlyon, R. P., Thompson, S. K., Heinrich, A., Pulvermüller, F., Davis, M. H., Shtyrov, Y., et al. (2010). Objective measures of auditory scene analysis. In E. A. Lopez-Poveda, A. R. Palmer, & R. Meddis (Eds.), The neurophysiological bases of auditory perception (pp. 507–519). New York: Springer.CrossRef
go back to reference Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30, 643–656.PubMed Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30, 643–656.PubMed
go back to reference Deike, S., Scheich, H., & Brechmann, A. (2010). Active stream segregation specifically involves the left human auditory cortex. Hearing Research, 265, 30–37.PubMedCrossRef Deike, S., Scheich, H., & Brechmann, A. (2010). Active stream segregation specifically involves the left human auditory cortex. Hearing Research, 265, 30–37.PubMedCrossRef
go back to reference Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.PubMedCrossRef Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.PubMedCrossRef
go back to reference Dolležal, L.-V., Beutelmann, R., & Klump, G. M. (2012). Stream segregation in the perception of sinusoidally amplitude-modulated tones. PLoS One, 7, e43615.PubMedCentralPubMedCrossRef Dolležal, L.-V., Beutelmann, R., & Klump, G. M. (2012). Stream segregation in the perception of sinusoidally amplitude-modulated tones. PLoS One, 7, e43615.PubMedCentralPubMedCrossRef
go back to reference Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.
go back to reference Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of amplitude-modulation rate. Journal of the Acoustical Society of America, 111, 1340–1348.PubMedCrossRef Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of amplitude-modulation rate. Journal of the Acoustical Society of America, 111, 1340–1348.PubMedCrossRef
go back to reference Hautus, M. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d’. Behavior Research Methods, Instruments, and Computers, 27, 46–51.CrossRef Hautus, M. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d’. Behavior Research Methods, Instruments, and Computers, 27, 46–51.CrossRef
go back to reference Haywood, N. R., & Roberts, B. (2010). Build-up of the tendency to segregate auditory streams: resetting effects evoked by a single deviant tone. Journal of the Acoustical Society of America, 128, 3019–3031.PubMedCrossRef Haywood, N. R., & Roberts, B. (2010). Build-up of the tendency to segregate auditory streams: resetting effects evoked by a single deviant tone. Journal of the Acoustical Society of America, 128, 3019–3031.PubMedCrossRef
go back to reference Haywood, N.R., Roberts, B. (2013). Build-up of auditory stream segregation induced by tone sequences of constant or alternating frequency and the resetting effects of single deviants. Journal of Experimental Psychology: Human Perception and Performance, 39, 1652–1666. Haywood, N.R., Roberts, B. (2013). Build-up of auditory stream segregation induced by tone sequences of constant or alternating frequency and the resetting effects of single deviants. Journal of Experimental Psychology: Human Perception and Performance, 39, 1652–1666.
go back to reference Horváth, J., Czigler, I., Jacobsen, T., Maess, B., Schröger, E., & Winkler, I. (2008). MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology, 45, 60–69.PubMed Horváth, J., Czigler, I., Jacobsen, T., Maess, B., Schröger, E., & Winkler, I. (2008). MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology, 45, 60–69.PubMed
go back to reference Horváth, J., Czigler, I., Sussman, E., & Winkler, I. (2001). Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain. Cognitive Brain Research, 12, 131–144.PubMedCrossRef Horváth, J., Czigler, I., Sussman, E., & Winkler, I. (2001). Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain. Cognitive Brain Research, 12, 131–144.PubMedCrossRef
go back to reference Horváth, J., Roeber, U., & Schröger, E. (2009). The utility of brief, spectrally rich, dynamic sounds in the passive oddball paradigm. Neuroscience Letters, 461, 262–265.PubMedCrossRef Horváth, J., Roeber, U., & Schröger, E. (2009). The utility of brief, spectrally rich, dynamic sounds in the passive oddball paradigm. Neuroscience Letters, 461, 262–265.PubMedCrossRef
go back to reference Jacobsen, T., Horenkamp, T., & Schröger, E. (2003). Preattentive memory-based comparison of sound intensity. Audiology and Neuro-Otology, 8, 338–346.PubMedCrossRef Jacobsen, T., Horenkamp, T., & Schröger, E. (2003). Preattentive memory-based comparison of sound intensity. Audiology and Neuro-Otology, 8, 338–346.PubMedCrossRef
go back to reference Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375. Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.
go back to reference Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355.PubMedCrossRef Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355.PubMedCrossRef
go back to reference Jones, M. R., Jagacinski, R. J., Yee, W., Floyd, R. L., & Klapp, S. T. (1995). Tests of attentional flexibility in listening to polyrhythmic patterns. Journal of Experimental Psychology: Human Perception and Performance, 21, 293–307.PubMed Jones, M. R., Jagacinski, R. J., Yee, W., Floyd, R. L., & Klapp, S. T. (1995). Tests of attentional flexibility in listening to polyrhythmic patterns. Journal of Experimental Psychology: Human Perception and Performance, 21, 293–307.PubMed
go back to reference Kasai, K., Nakagome, K., Hiramatsu, K.-I., Fukuda, M., Honda, M., & Iwanami, A. (2002). Psychophysiological index during auditory selective attention correlates with visual continuous performance test sensitivity in normal adults. International Journal of Psychophysiology, 45, 211–225.PubMedCrossRef Kasai, K., Nakagome, K., Hiramatsu, K.-I., Fukuda, M., Honda, M., & Iwanami, A. (2002). Psychophysiological index during auditory selective attention correlates with visual continuous performance test sensitivity in normal adults. International Journal of Psychophysiology, 45, 211–225.PubMedCrossRef
go back to reference Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biological Psychology, 74, 1–19.PubMedCrossRef Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biological Psychology, 74, 1–19.PubMedCrossRef
go back to reference Lepistö, T., Kuitunen, A., Sussman, E., Saalasti, S., Jansson-Verkasalo, E., Nieminen-von Wendt, T., et al. (2009). Auditory stream segregation in children with Asperger syndrome. Biological Psychology, 82, 301–307.PubMedCentralPubMedCrossRef Lepistö, T., Kuitunen, A., Sussman, E., Saalasti, S., Jansson-Verkasalo, E., Nieminen-von Wendt, T., et al. (2009). Auditory stream segregation in children with Asperger syndrome. Biological Psychology, 82, 301–307.PubMedCentralPubMedCrossRef
go back to reference Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 29, 43–51.PubMed Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 29, 43–51.PubMed
go back to reference Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: a user’s guide (2nd ed.). Mahwah: Lawrence Erlbaum Associates. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: a user’s guide (2nd ed.). Mahwah: Lawrence Erlbaum Associates.
go back to reference May, P. J. C., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47, 66–122.PubMedCrossRef May, P. J. C., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47, 66–122.PubMedCrossRef
go back to reference McAnally, K. I., Castles, A., & Bannister, S. (2004). Auditory temporal pattern discrimination and reading ability. Journal of Speech, Language, and Hearing Research, 47, 1237–1243.PubMedCrossRef McAnally, K. I., Castles, A., & Bannister, S. (2004). Auditory temporal pattern discrimination and reading ability. Journal of Speech, Language, and Hearing Research, 47, 1237–1243.PubMedCrossRef
go back to reference Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology, 11, 709–724.PubMedCentralPubMedCrossRef Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology, 11, 709–724.PubMedCentralPubMedCrossRef
go back to reference Moore, B. C. J., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica United With Acustica, 88, 320–333. Moore, B. C. J., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica United With Acustica, 88, 320–333.
go back to reference Moore, B. C. J., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 919–931.PubMedCentralPubMedCrossRef Moore, B. C. J., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 919–931.PubMedCentralPubMedCrossRef
go back to reference Muller-Gass, A., Stelmack, R. M., & Campbell, K. B. (2005). “…and were instructed to read a self-selected book while ignoring the auditory stimuli”: the effects of task demands on the mismatch negativity. Clinical Neurophysiology, 116, 2142–2152.PubMedCrossRef Muller-Gass, A., Stelmack, R. M., & Campbell, K. B. (2005). “…and were instructed to read a self-selected book while ignoring the auditory stimuli”: the effects of task demands on the mismatch negativity. Clinical Neurophysiology, 116, 2142–2152.PubMedCrossRef
go back to reference Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.PubMedCrossRef Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.PubMedCrossRef
go back to reference Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118, 2544–2590.PubMedCrossRef Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118, 2544–2590.PubMedCrossRef
go back to reference Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24, 375–425.PubMedCrossRef Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24, 375–425.PubMedCrossRef
go back to reference Näätänen, R., Simpson, M., & Loveless, N. E. (1982). Stimulus deviance and evoked potentials. Biological Psychology, 14, 53–98.PubMedCrossRef Näätänen, R., Simpson, M., & Loveless, N. E. (1982). Stimulus deviance and evoked potentials. Biological Psychology, 14, 53–98.PubMedCrossRef
go back to reference Novak, G. P., Ritter, W., Vaughan, H. G., & Wiznitzer, M. L. (1990). Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalography and Clinical Neurophysiology, 75, 255–275.PubMedCrossRef Novak, G. P., Ritter, W., Vaughan, H. G., & Wiznitzer, M. L. (1990). Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalography and Clinical Neurophysiology, 75, 255–275.PubMedCrossRef
go back to reference Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. International Journal of Medical Sciences, 2, 147–154.PubMedCentralPubMedCrossRef Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. International Journal of Medical Sciences, 2, 147–154.PubMedCentralPubMedCrossRef
go back to reference Pettigrew, C. M., Murdoch, B. E., Ponton, C. W., Kei, J., Chenery, H. J., & Alku, P. (2004). Subtitled videos and mismatch negativity (MMN) investigations of spoken word processing. Journal of the American Academy of Audiology, 15, 469–485.PubMedCrossRef Pettigrew, C. M., Murdoch, B. E., Ponton, C. W., Kei, J., Chenery, H. J., & Alku, P. (2004). Subtitled videos and mismatch negativity (MMN) investigations of spoken word processing. Journal of the American Academy of Audiology, 15, 469–485.PubMedCrossRef
go back to reference Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: different water in the same river. Audiology and Neuro-Otology, 5, 111–139.PubMedCrossRef Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: different water in the same river. Audiology and Neuro-Otology, 5, 111–139.PubMedCrossRef
go back to reference Pressnitzer, D., & Hupé, J. M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16, 1351–1357.PubMedCrossRef Pressnitzer, D., & Hupé, J. M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16, 1351–1357.PubMedCrossRef
go back to reference Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18, 1124–1128.PubMedCentralPubMedCrossRef Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18, 1124–1128.PubMedCentralPubMedCrossRef
go back to reference Rahne, T., & Sussman, E. (2009). Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. European Journal of Neuroscience, 29, 205–211.PubMedCentralPubMedCrossRef Rahne, T., & Sussman, E. (2009). Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. European Journal of Neuroscience, 29, 205–211.PubMedCentralPubMedCrossRef
go back to reference Ritter, W., Paavilainen, P., Lavikainen, J., Reinikainen, K., Alho, K., Sams, M., et al. (1992). Event-related potentials to repetition and change of auditory stimuli. Electroencephalography and Clinical Neurophysiology, 83, 306–321.PubMedCrossRef Ritter, W., Paavilainen, P., Lavikainen, J., Reinikainen, K., Alho, K., Sams, M., et al. (1992). Event-related potentials to repetition and change of auditory stimuli. Electroencephalography and Clinical Neurophysiology, 83, 306–321.PubMedCrossRef
go back to reference Ritter, W., & Ruchkin, D. S. (1992). A review of event-related potential components discovered in the context of studying P3. Annals of the New York Academy of Sciences, 658, 1–32.PubMedCrossRef Ritter, W., & Ruchkin, D. S. (1992). A review of event-related potential components discovered in the context of studying P3. Annals of the New York Academy of Sciences, 658, 1–32.PubMedCrossRef
go back to reference Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2002). Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. Journal of the Acoustical Society of America, 112, 2074–2085.PubMedCrossRef Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2002). Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. Journal of the Acoustical Society of America, 112, 2074–2085.PubMedCrossRef
go back to reference Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2008). Effects of the build-up and resetting of auditory stream segregation on temporal discrimination. Journal of Experimental Psychology: Human Perception and Performance, 34, 992–1006.PubMed Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2008). Effects of the build-up and resetting of auditory stream segregation on temporal discrimination. Journal of Experimental Psychology: Human Perception and Performance, 34, 992–1006.PubMed
go back to reference Schröger, E. (2005). The mismatch negativity as a tool to study auditory processing. Acta Acustica United with Acustica, 91, 490–501. Schröger, E. (2005). The mismatch negativity as a tool to study auditory processing. Acta Acustica United with Acustica, 91, 490–501.
go back to reference Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J., & Pressnitzer, D. (2012). Multistability in perception: binding sensory modalities, an overview. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 896–905.PubMedCentralPubMedCrossRef Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J., & Pressnitzer, D. (2012). Multistability in perception: binding sensory modalities, an overview. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 896–905.PubMedCentralPubMedCrossRef
go back to reference Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.PubMedCentralPubMedCrossRef Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.PubMedCentralPubMedCrossRef
go back to reference Snyder, J. S., Gregg, M. K., Weintraub, D. M., & Alain, C. (2012). Attention, awareness, and the perception of auditory scenes. Frontiers in Psychology, 3, 15.PubMedCentralPubMedCrossRef Snyder, J. S., Gregg, M. K., Weintraub, D. M., & Alain, C. (2012). Attention, awareness, and the perception of auditory scenes. Frontiers in Psychology, 3, 15.PubMedCentralPubMedCrossRef
go back to reference Spielmann, M. I., Schröger, E., Kotz, S. A., Pechmann, T., & Bendixen, A. (2013). Using a staircase procedure for the objective measurement of auditory stream integration and segregation thresholds. Frontiers in Psychology, 4, 534.PubMedCentralPubMedCrossRef Spielmann, M. I., Schröger, E., Kotz, S. A., Pechmann, T., & Bendixen, A. (2013). Using a staircase procedure for the objective measurement of auditory stream integration and segregation thresholds. Frontiers in Psychology, 4, 534.PubMedCentralPubMedCrossRef
go back to reference Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers, 31, 137–149.PubMedCrossRef Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers, 31, 137–149.PubMedCrossRef
go back to reference Sussman, E. S. (2007). A new view on the MMN and attention debate: the role of context in processing auditory events. Journal of Psychophysiology, 21, 164–175.CrossRef Sussman, E. S. (2007). A new view on the MMN and attention debate: the role of context in processing auditory events. Journal of Psychophysiology, 21, 164–175.CrossRef
go back to reference Sussman, E. S., Bregman, A. S., Wang, W. J., & Khan, F. J. (2005). Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments. Cognitive, Affective, and Behavioral Neuroscience, 5, 93–110.CrossRef Sussman, E. S., Bregman, A. S., Wang, W. J., & Khan, F. J. (2005). Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments. Cognitive, Affective, and Behavioral Neuroscience, 5, 93–110.CrossRef
go back to reference Sussman, E., Čeponienė, R., Shestakova, A., Näätänen, R., & Winkler, I. (2001). Auditory stream segregation processes operate similarly in school-aged children and adults. Hearing Research, 153, 108–114.PubMedCrossRef Sussman, E., Čeponienė, R., Shestakova, A., Näätänen, R., & Winkler, I. (2001). Auditory stream segregation processes operate similarly in school-aged children and adults. Hearing Research, 153, 108–114.PubMedCrossRef
go back to reference Sussman, E. S., Horváth, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69, 136–152.PubMedCrossRef Sussman, E. S., Horváth, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69, 136–152.PubMedCrossRef
go back to reference Sussman, E., & Steinschneider, M. (2006). Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Research, 1075, 165–174.PubMedCentralPubMedCrossRef Sussman, E., & Steinschneider, M. (2006). Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Research, 1075, 165–174.PubMedCentralPubMedCrossRef
go back to reference Thompson, S. K., Carlyon, R. P., & Cusack, R. (2011). An objective measurement of the build-up of auditory streaming and of its modulation by attention. Journal of Experimental Psychology: Human Perception and Performance, 37, 1253–1262.PubMed Thompson, S. K., Carlyon, R. P., & Cusack, R. (2011). An objective measurement of the build-up of auditory streaming and of its modulation by attention. Journal of Experimental Psychology: Human Perception and Performance, 37, 1253–1262.PubMed
go back to reference van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. Doctoral dissertation, Technical University Eindhoven, Eindhoven, The Netherlands. van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. Doctoral dissertation, Technical University Eindhoven, Eindhoven, The Netherlands.
go back to reference Vliegen, J., Moore, B. C. J., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. Journal of the Acoustical Society of America, 106, 938–945.PubMedCrossRef Vliegen, J., Moore, B. C. J., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. Journal of the Acoustical Society of America, 106, 938–945.PubMedCrossRef
go back to reference Vliegen, J., & Oxenham, A. J. (1999). Sequential stream segregation in the absence of spectral cues. Journal of the Acoustical Society of America, 105, 339–346.PubMedCrossRef Vliegen, J., & Oxenham, A. J. (1999). Sequential stream segregation in the absence of spectral cues. Journal of the Acoustical Society of America, 105, 339–346.PubMedCrossRef
go back to reference Winkler, I. (1996). Necessary and sufficient conditions for the elicitation of the mismatch negativity. In C. Ogura, Y. Koga & M. Shimokochi (Eds.), Recent advances in event-related brain potentials research. Proceedings of the XIth International Conference on Event-related Brain Potentials (EPIC), Okinawa, Japan, June 25-30, 1995 (pp. 36–43). Amsterdam: Elsevier. Winkler, I. (1996). Necessary and sufficient conditions for the elicitation of the mismatch negativity. In C. Ogura, Y. Koga & M. Shimokochi (Eds.), Recent advances in event-related brain potentials research. Proceedings of the XIth International Conference on Event-related Brain Potentials (EPIC), Okinawa, Japan, June 25-30, 1995 (pp. 36–43). Amsterdam: Elsevier.
go back to reference Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21, 147–163.CrossRef Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21, 147–163.CrossRef
go back to reference Winkler, I., & Czigler, I. (1998). Mismatch negativity: deviance detection or the maintenance of the ‘standard’. NeuroReport, 9, 3809–3813.PubMedCrossRef Winkler, I., & Czigler, I. (1998). Mismatch negativity: deviance detection or the maintenance of the ‘standard’. NeuroReport, 9, 3809–3813.PubMedCrossRef
go back to reference Winkler, I., Denham, S. L., Mill, R., Bőhm, T. M., & Bendixen, A. (2012). Multistability in auditory stream segregation: a predictive coding view. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 1001–1012.PubMedCentralPubMedCrossRef Winkler, I., Denham, S. L., Mill, R., Bőhm, T. M., & Bendixen, A. (2012). Multistability in auditory stream segregation: a predictive coding view. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 1001–1012.PubMedCentralPubMedCrossRef
go back to reference Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.PubMedCrossRef Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.PubMedCrossRef
go back to reference Winkler, I., Kushnerenko, E., Horváth, J., Čeponienė, R., Fellman, V., Huotilainen, M., et al. (2003a). Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences of the United States of America, 100, 11812–11815.PubMedCentralPubMedCrossRef Winkler, I., Kushnerenko, E., Horváth, J., Čeponienė, R., Fellman, V., Huotilainen, M., et al. (2003a). Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences of the United States of America, 100, 11812–11815.PubMedCentralPubMedCrossRef
go back to reference Winkler, I., Sussman, E., Tervaniemi, M., Horváth, J., Ritter, W., & Näätänen, R. (2003b). Preattentive auditory context effects. Cognitive, Affective, and Behavioral Neuroscience, 3, 57–77.CrossRef Winkler, I., Sussman, E., Tervaniemi, M., Horváth, J., Ritter, W., & Näätänen, R. (2003b). Preattentive auditory context effects. Cognitive, Affective, and Behavioral Neuroscience, 3, 57–77.CrossRef
go back to reference Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., Ilmoniemi, R. J., & Näätänen, R. (1998). Temporal window of integration of auditory information in the human brain. Psychophysiology, 35, 615–619.PubMedCrossRef Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., Ilmoniemi, R. J., & Näätänen, R. (1998). Temporal window of integration of auditory information in the human brain. Psychophysiology, 35, 615–619.PubMedCrossRef
go back to reference Zachau, S., Rinker, T., Körner, B., Kohls, G., Maas, V., Hennighausen, K., et al. (2005). Extracting rules: early and late mismatch negativity to tone patterns. Neuroreport, 16, 2015–2019.PubMedCrossRef Zachau, S., Rinker, T., Körner, B., Kohls, G., Maas, V., Hennighausen, K., et al. (2005). Extracting rules: early and late mismatch negativity to tone patterns. Neuroreport, 16, 2015–2019.PubMedCrossRef
Metagegevens
Titel
Attention effects on auditory scene analysis: insights from event-related brain potentials
Auteurs
Mona Isabel Spielmann
Erich Schröger
Sonja A. Kotz
Alexandra Bendixen
Publicatiedatum
01-05-2014
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2014
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-014-0547-7

Andere artikelen Uitgave 3/2014

Psychological Research 3/2014 Naar de uitgave