Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2012

01-07-2012 | Original Article

The role of appearance and motion in action prediction

Auteurs: Ayse Pinar Saygin, Waltraud Stadler

Gepubliceerd in: Psychological Research | Uitgave 4/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

We used a novel stimulus set of human and robot actions to explore the role of humanlike appearance and motion in action prediction. Participants viewed videos of familiar actions performed by three agents: human, android and robot, the former two sharing human appearance, the latter two nonhuman motion. In each trial, the video was occluded for 400 ms. Participants were asked to determine whether the action continued coherently (in-time) after occlusion. The timing at which the action continued was early, late, or in-time (100, 700 or 400 ms after the start of occlusion). Task performance interacted with the observed agent. For early continuations, accuracy was highest for human, lowest for robot actions. For late continuations, the pattern was reversed. Both android and human conditions differed significantly from the robot condition. Given the robot and android conditions had the same kinematics, the visual form of the actor appears to affect action prediction. We suggest that the selection of the internal sensorimotor model used for action prediction is influenced by the observed agent’s appearance.
Literatuur
go back to reference Bar, M. (2009). Predictions: a universal principle in the operation of the human brain. Introduction. Philos Trans R Soc Lond B Biol Sci, 364(1521), 1181–1182.PubMedCrossRef Bar, M. (2009). Predictions: a universal principle in the operation of the human brain. Introduction. Philos Trans R Soc Lond B Biol Sci, 364(1521), 1181–1182.PubMedCrossRef
go back to reference Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Front Hum Neurosci, 4, 25.PubMed Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Front Hum Neurosci, 4, 25.PubMed
go back to reference Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol, 16(19), 1905–1910.PubMedCrossRef Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol, 16(19), 1905–1910.PubMedCrossRef
go back to reference Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Curr Biol, 16(1), 69–74.PubMedCrossRef Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Curr Biol, 16(1), 69–74.PubMedCrossRef
go back to reference Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Curr Biol, 17(17), 1527–1531.PubMedCrossRef Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Curr Biol, 17(17), 1527–1531.PubMedCrossRef
go back to reference Chaminade, T., & Cheng, G. (2009). Social cognitive neuroscience and humanoid robotics. J Physiol Paris, 103(3–5), 286–295.PubMedCrossRef Chaminade, T., & Cheng, G. (2009). Social cognitive neuroscience and humanoid robotics. J Physiol Paris, 103(3–5), 286–295.PubMedCrossRef
go back to reference Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Soc Cogn Affect Neurosci, 2(3), 206–216.PubMedCrossRef Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Soc Cogn Affect Neurosci, 2(3), 206–216.PubMedCrossRef
go back to reference Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. J Neurosci, 31(9), 3493–3499.PubMedCrossRef Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. J Neurosci, 31(9), 3493–3499.PubMedCrossRef
go back to reference Coradeschi, S., Ishiguro, H., Asada, M., Shapiro, S. C., Thielscher, M., Breazeal, C., et al. (2006). Human-inspired robots. IEEE Intell Syst, 21(4), 74–85.CrossRef Coradeschi, S., Ishiguro, H., Asada, M., Shapiro, S. C., Thielscher, M., Breazeal, C., et al. (2006). Human-inspired robots. IEEE Intell Syst, 21(4), 74–85.CrossRef
go back to reference Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31(3), 1257–1267.PubMedCrossRef Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31(3), 1257–1267.PubMedCrossRef
go back to reference Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769–771.PubMedCrossRef Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769–771.PubMedCrossRef
go back to reference Friston, K. (2005). A theory of cortical responses. Phil Trans B, 360(1456), 815–836.CrossRef Friston, K. (2005). A theory of cortical responses. Phil Trans B, 360(1456), 815–836.CrossRef
go back to reference Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Suppl 2), T22–T32.PubMedCrossRef Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Suppl 2), T22–T32.PubMedCrossRef
go back to reference Ho, C–. C., & MacDorman, K. F. (2010). Revisiting the uncanny valley theory: developing and validating an alternative to the Godspeed indices. Comput Hum Behav, 26(6), 1508–1518.CrossRef Ho, C–. C., & MacDorman, K. F. (2010). Revisiting the uncanny valley theory: developing and validating an alternative to the Godspeed indices. Comput Hum Behav, 26(6), 1508–1518.CrossRef
go back to reference Ishiguro, H. (2006). Android science: conscious and subconscious recognition. Connection Sci, 18(4), 319–332.CrossRef Ishiguro, H. (2006). Android science: conscious and subconscious recognition. Connection Sci, 18(4), 319–332.CrossRef
go back to reference Kawato, M., & Wolpert, D. (1998). Internal models for motor control. Novartis Found Symp, 218, 291–304. Discussion 304–297.PubMed Kawato, M., & Wolpert, D. (1998). Internal models for motor control. Novartis Found Symp, 218, 291–304. Discussion 304–297.PubMed
go back to reference Kilner, J. M., Friston, K. J., & Frith, C. D. (2007a). Predictive coding: an account of the mirror neuron system. Cogn Process, 8(3), 159–166.PubMedCrossRef Kilner, J. M., Friston, K. J., & Frith, C. D. (2007a). Predictive coding: an account of the mirror neuron system. Cogn Process, 8(3), 159–166.PubMedCrossRef
go back to reference Kilner, J. M., Hamilton, A. F., & Blakemore, S. J. (2007b). Interference effect of observed human movement on action is due to velocity profile of biological motion. Soc Neurosci, 2(3–4), 158–166.PubMedCrossRef Kilner, J. M., Hamilton, A. F., & Blakemore, S. J. (2007b). Interference effect of observed human movement on action is due to velocity profile of biological motion. Soc Neurosci, 2(3–4), 158–166.PubMedCrossRef
go back to reference Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Curr Biol, 13(6), 522–525.PubMedCrossRef Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Curr Biol, 13(6), 522–525.PubMedCrossRef
go back to reference Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nat Neurosci, 7(12), 1299–1301.PubMedCrossRef Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nat Neurosci, 7(12), 1299–1301.PubMedCrossRef
go back to reference Minato, T. & Ishiguro, H. (2008) Construction and evaluation of a model of natural human motion based on motion diversity. Proc of the 3rd ACM/IEEE International Conference on Human-Robot Interaction, 65–71. Minato, T. & Ishiguro, H. (2008) Construction and evaluation of a model of natural human motion based on motion diversity. Proc of the 3rd ACM/IEEE International Conference on Human-Robot Interaction, 65–71.
go back to reference Mori, M. (1970). The uncanny valley. Energy, 7(4), 33–35. Mori, M. (1970). The uncanny valley. Energy, 7(4), 33–35.
go back to reference Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: controlling for meaningful coherent motion. J Neurosci, 23(17), 6819–6825.PubMed Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: controlling for meaningful coherent motion. J Neurosci, 23(17), 6819–6825.PubMed
go back to reference Pollick, F. E. (2009). In search of the Uncanny Valley. In P. Daras & O. M. Ibarra (Eds.), UC Media 2009 (pp. 69–78). Venice, Italy: Springer. Pollick, F. E. (2009). In search of the Uncanny Valley. In P. Daras & O. M. Ibarra (Eds.), UC Media 2009 (pp. 69–78). Venice, Italy: Springer.
go back to reference Pollick, F. E., Hale, J. G., & Tzoneva-Hadjigeorgieva, M. (2005). Perception of humanoid movement. Int J Humanoid Robot, 3, 277–300.CrossRef Pollick, F. E., Hale, J. G., & Tzoneva-Hadjigeorgieva, M. (2005). Perception of humanoid movement. Int J Humanoid Robot, 3, 277–300.CrossRef
go back to reference Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proc Biol Sci, 274(1625), 2509–2514.PubMedCrossRef Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proc Biol Sci, 274(1625), 2509–2514.PubMedCrossRef
go back to reference Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci, 2(1), 79–87.PubMedCrossRef Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci, 2(1), 79–87.PubMedCrossRef
go back to reference Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci, 2(9), 661–670.PubMedCrossRef Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci, 2(9), 661–670.PubMedCrossRef
go back to reference Saunier, G., Papaxanthis, C., Vargas, C. D., & Pozzo, T. (2008). Inference of complex human motion requires internal models of action: behavioral evidence. Exp Brain Res, 185(3), 399–409.PubMedCrossRef Saunier, G., Papaxanthis, C., Vargas, C. D., & Pozzo, T. (2008). Inference of complex human motion requires internal models of action: behavioral evidence. Exp Brain Res, 185(3), 399–409.PubMedCrossRef
go back to reference Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(Pt 9), 2452–2461.PubMedCrossRef Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(Pt 9), 2452–2461.PubMedCrossRef
go back to reference Saygin, A. P., Chaminade, T., & Ishiguro, H. (2010). The perception of humans and robots: Uncanny hills in parietal cortex. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2716–2720). Portland, OR: Cognitive Science Society. Saygin, A. P., Chaminade, T., & Ishiguro, H. (2010). The perception of humans and robots: Uncanny hills in parietal cortex. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2716–2720). Portland, OR: Cognitive Science Society.
go back to reference Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. F. (2011a). The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience. Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. F. (2011a). The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience.
go back to reference Saygin, A. P., Chaminade, T., Urgen, B. A., & Ishiguro, H. (2011b). Cognitive neuroscience and robotics: a mutually beneficial joining of forces. In L. Takayama (Ed.), Robotics: systems and science. CA: Los Angeles. Saygin, A. P., Chaminade, T., Urgen, B. A., & Ishiguro, H. (2011b). Cognitive neuroscience and robotics: a mutually beneficial joining of forces. In L. Takayama (Ed.), Robotics: systems and science. CA: Los Angeles.
go back to reference Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci, 11(5), 211–218.PubMedCrossRef Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci, 11(5), 211–218.PubMedCrossRef
go back to reference Schutz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends Cogn Sci, 11(8), 349–355.PubMedCrossRef Schutz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends Cogn Sci, 11(8), 349–355.PubMedCrossRef
go back to reference Shimada, M., Minato, T., Itakura, S. & Ishiguro, H. (2006). Evaluation of android using unconscious recognition, Proc of the IEEE-RAS International Conference on Humanoid Robots, 157–162. Shimada, M., Minato, T., Itakura, S. & Ishiguro, H. (2006). Evaluation of android using unconscious recognition, Proc of the IEEE-RAS International Conference on Humanoid Robots, 157–162.
go back to reference Sparenberg, P., Springer, A., & Prinz, W. (2011). Predicting others’ actions: evidence for a constant time delay in action simulation. Psychol Res. Sparenberg, P., Springer, A., & Prinz, W. (2011). Predicting others’ actions: evidence for a constant time delay in action simulation. Psychol Res.
go back to reference Springer, A., Brandstadter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain Cogn, 76(1), 26–36.PubMedCrossRef Springer, A., Brandstadter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain Cogn, 76(1), 26–36.PubMedCrossRef
go back to reference Stadler, W., Schubotz, R. I., von Cramon, D. Y., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: differential premotor cortex involvement. Hum Brain Mapp, 32(5), 677–687.PubMedCrossRef Stadler, W., Schubotz, R. I., von Cramon, D. Y., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: differential premotor cortex involvement. Hum Brain Mapp, 32(5), 677–687.PubMedCrossRef
go back to reference Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRef Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRef
go back to reference Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychol Bull, 131(3), 460–473.PubMedCrossRef Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychol Bull, 131(3), 460–473.PubMedCrossRef
go back to reference Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philos Trans R Soc B Biol Sci, 358(1431), 593–602.CrossRef Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philos Trans R Soc B Biol Sci, 358(1431), 593–602.CrossRef
Metagegevens
Titel
The role of appearance and motion in action prediction
Auteurs
Ayse Pinar Saygin
Waltraud Stadler
Publicatiedatum
01-07-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0426-z

Andere artikelen Uitgave 4/2012

Psychological Research 4/2012 Naar de uitgave