Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2012

01-07-2012 | Review

Long- and short-term plastic modeling of action prediction abilities in volleyball

Auteurs: Cosimo Urgesi, Maria Maddalena Savonitto, Franco Fabbro, Salvatore M. Aglioti

Gepubliceerd in: Psychological Research | Uitgave 4/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Athletes show superior abilities not only in executing complex actions, but also in anticipating others’ moves. Here, we explored how visual and motor experiences contribute to forge elite action prediction abilities in volleyball players. Both adult athletes and supporters were more accurate than novices in predicting the fate of volleyball floating services by viewing the initial ball trajectory, while only athletes could base their predictions on body kinematics. Importantly, adolescents assigned to physical practice training improved their ability to predict the fate of the actions by reading body kinematics, while those assigned to the observational practice training improved only in understanding the ball trajectory. The results suggest that physical and observational practice might provide complementary and mutually reinforcing contributions to the superior perceptual abilities of elite athletes. Moreover, direct motor experience is required to establish novel perceptuo-motor representations that are used to predict others’ actions ahead of realization.
Literatuur
go back to reference Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353–367.PubMedCrossRef Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353–367.PubMedCrossRef
go back to reference Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37(6), 931–948.PubMedCrossRef Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37(6), 931–948.PubMedCrossRef
go back to reference Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.PubMedCrossRef Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.PubMedCrossRef
go back to reference Alaerts, K., Heremans, E., Swinnen, S. P., & Wenderoth, N. (2009). How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia, 47(2), 415–422.PubMedCrossRef Alaerts, K., Heremans, E., Swinnen, S. P., & Wenderoth, N. (2009). How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia, 47(2), 415–422.PubMedCrossRef
go back to reference Ashford, D., Bennett, S. J., & Davids, K. (2006). Observational modeling effects for movement dynamics and movement outcome measures across differing task constraints: a meta-analysis. Journal of Motor Behavior, 38(3), 185–205.PubMedCrossRef Ashford, D., Bennett, S. J., & Davids, K. (2006). Observational modeling effects for movement dynamics and movement outcome measures across differing task constraints: a meta-analysis. Journal of Motor Behavior, 38(3), 185–205.PubMedCrossRef
go back to reference Avenanti, A., & Urgesi, C. (2011). Understanding ‘what’ others do: mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6(3), 257–259.PubMedCrossRef Avenanti, A., & Urgesi, C. (2011). Understanding ‘what’ others do: mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6(3), 257–259.PubMedCrossRef
go back to reference Baker, C. I., Keysers, C., Jellema, T., Wicker, B., & Perrett, D. I. (2001). Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Experimental Brain Research, 140(3), 375–381.CrossRef Baker, C. I., Keysers, C., Jellema, T., Wicker, B., & Perrett, D. I. (2001). Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Experimental Brain Research, 140(3), 375–381.CrossRef
go back to reference Barraclough, N. E., Xiao, D., Oram, M. W., & Perrett, D. I. (2006). The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Progress in Brain Research, 154, 135–148.PubMedCrossRef Barraclough, N. E., Xiao, D., Oram, M. W., & Perrett, D. I. (2006). The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Progress in Brain Research, 154, 135–148.PubMedCrossRef
go back to reference Bernier, P., Chua, R., Bard, C., & Franks, I. M. (2006). Updating of an internal model without proprioception: a deafferentation study. Neuroreport, 17(13), 1421–1425.PubMedCrossRef Bernier, P., Chua, R., Bard, C., & Franks, I. M. (2006). Updating of an internal model without proprioception: a deafferentation study. Neuroreport, 17(13), 1421–1425.PubMedCrossRef
go back to reference Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135(2), 240–251.PubMedCrossRef Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135(2), 240–251.PubMedCrossRef
go back to reference Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124–143.PubMedCrossRef Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124–143.PubMedCrossRef
go back to reference Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11(3), 230–238.PubMed Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11(3), 230–238.PubMed
go back to reference Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21(5), 1013–1022.PubMedCrossRef Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21(5), 1013–1022.PubMedCrossRef
go back to reference Buchanan, J. J., & Wright, D. L. (2011). Generalization of action knowledge following observational learning. Acta Psychologica, 136(1), 167–178.PubMedCrossRef Buchanan, J. J., & Wright, D. L. (2011). Generalization of action knowledge following observational learning. Acta Psychologica, 136(1), 167–178.PubMedCrossRef
go back to reference Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.PubMedCrossRef Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.PubMedCrossRef
go back to reference Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.PubMedCrossRef Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.PubMedCrossRef
go back to reference Calvo-Merino, B., Urgesi, C., Orgs, G., Aglioti, S. M., & Haggard, P. (2010). Extrastriate body area underlies aesthetic evaluation of body stimuli. Experimental Brain Research, 204(3), 447–456.CrossRef Calvo-Merino, B., Urgesi, C., Orgs, G., Aglioti, S. M., & Haggard, P. (2010). Extrastriate body area underlies aesthetic evaluation of body stimuli. Experimental Brain Research, 204(3), 447–456.CrossRef
go back to reference Cañal-Bruland, R., van der Kamp, J., & van Kesteren, J. (2010). An examination of motor and perceptual contributions to the recognition of deception from others’ actions. Human Movement Science, 29(1), 94–102.PubMedCrossRef Cañal-Bruland, R., van der Kamp, J., & van Kesteren, J. (2010). An examination of motor and perceptual contributions to the recognition of deception from others’ actions. Human Movement Science, 29(1), 94–102.PubMedCrossRef
go back to reference Candidi, M., Urgesi, C., Ionta, S., & Aglioti, S. M. (2008). Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions. Social Neuroscience, 3(3–4), 388–400.PubMedCrossRef Candidi, M., Urgesi, C., Ionta, S., & Aglioti, S. M. (2008). Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions. Social Neuroscience, 3(3–4), 388–400.PubMedCrossRef
go back to reference Carrozzo, M., Moscatelli, A., & Lacquaniti, F. (2010). Tempo rubato: animacy speeds up time in the brain. PLoS One, 5(12), e15638.PubMedCrossRef Carrozzo, M., Moscatelli, A., & Lacquaniti, F. (2010). Tempo rubato: animacy speeds up time in the brain. PLoS One, 5(12), e15638.PubMedCrossRef
go back to reference Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.PubMedCrossRef Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.PubMedCrossRef
go back to reference Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M. & Heyes, C. (2008). Through the looking glass: counter-mirror activation following incompatible sensorimotor learning. The European Journal of Neuroscience, 28(6), 1208–1215. Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M. & Heyes, C. (2008). Through the looking glass: counter-mirror activation following incompatible sensorimotor learning. The European Journal of Neuroscience, 28(6), 1208–1215.
go back to reference Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 1527–1531.PubMedCrossRef Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 1527–1531.PubMedCrossRef
go back to reference Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 364(1528), 2369–2380.CrossRef Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 364(1528), 2369–2380.CrossRef
go back to reference Cattaneo, L., Barchiesi, G., Tabarelli, D., Arfeller, C., Sato, M., & Glenberg, A. M. (2010). One’s motor performance predictably modulates the understanding of others’ actions through adaptation of premotor visuo-motor neurons. Social Cognitive and Affective Neuroscience, 6(3), 301–310.PubMedCrossRef Cattaneo, L., Barchiesi, G., Tabarelli, D., Arfeller, C., Sato, M., & Glenberg, A. M. (2010). One’s motor performance predictably modulates the understanding of others’ actions through adaptation of premotor visuo-motor neurons. Social Cognitive and Affective Neuroscience, 6(3), 301–310.PubMedCrossRef
go back to reference Censor, N., & Cohen, L. G. (2011). Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. The Journal of Physiology, 589(Pt 1), 21–28.PubMedCrossRef Censor, N., & Cohen, L. G. (2011). Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. The Journal of Physiology, 589(Pt 1), 21–28.PubMedCrossRef
go back to reference Chong, T. T., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 1576–1580.PubMedCrossRef Chong, T. T., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 1576–1580.PubMedCrossRef
go back to reference Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31(9), 3493–3499.PubMedCrossRef Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31(9), 3493–3499.PubMedCrossRef
go back to reference Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 840–852.PubMedCrossRef Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 840–852.PubMedCrossRef
go back to reference Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31(3), 1257–1267.PubMedCrossRef Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31(3), 1257–1267.PubMedCrossRef
go back to reference Cross, E. S., Hamilton, A. F. D. C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009a). Dissociable substrates for body motion and physical experience in the human action observation network. The European Journal of Neuroscience, 30(7), 1383–1392.PubMedCrossRef Cross, E. S., Hamilton, A. F. D. C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009a). Dissociable substrates for body motion and physical experience in the human action observation network. The European Journal of Neuroscience, 30(7), 1383–1392.PubMedCrossRef
go back to reference Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009b). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.PubMedCrossRef Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009b). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.PubMedCrossRef
go back to reference Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: how to visually fool the goalkeeper. PLoS One, 5(10), e13161.PubMedCrossRef Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: how to visually fool the goalkeeper. PLoS One, 5(10), e13161.PubMedCrossRef
go back to reference di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180.
go back to reference Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. J. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461–469.PubMedCrossRef Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. J. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461–469.PubMedCrossRef
go back to reference Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception, 32(9), 1127–1139.PubMedCrossRef Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception, 32(9), 1127–1139.PubMedCrossRef
go back to reference Fazio, P., Cantagallo, A., Craighero, L., D’Ausilio, A., Roy, A. C., Pozzo, T., et al. (2009). Encoding of human action in Broca’s area. Brain, 132(Pt 7), 1980–1988.PubMedCrossRef Fazio, P., Cantagallo, A., Craighero, L., D’Ausilio, A., Roy, A. C., Pozzo, T., et al. (2009). Encoding of human action in Broca’s area. Brain, 132(Pt 7), 1980–1988.PubMedCrossRef
go back to reference Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11(4), 461–481.CrossRef Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11(4), 461–481.CrossRef
go back to reference Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33(6), 575–581. Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33(6), 575–581.
go back to reference Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.PubMedCrossRef Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.PubMedCrossRef
go back to reference Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2004). Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. The European Journal of Neuroscience, 20(8), 2193–2202.PubMedCrossRef Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2004). Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. The European Journal of Neuroscience, 20(8), 2193–2202.PubMedCrossRef
go back to reference Garrison, K. A., Winstein, C. J., & Aziz-Zadeh, L. (2010). The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural Repair, 24(5), 404–412.PubMedCrossRef Garrison, K. A., Winstein, C. J., & Aziz-Zadeh, L. (2010). The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural Repair, 24(5), 404–412.PubMedCrossRef
go back to reference Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.PubMedCrossRef Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.PubMedCrossRef
go back to reference Grafton, S. T., & Hamilton, A. F. D. C. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.PubMedCrossRef Grafton, S. T., & Hamilton, A. F. D. C. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.PubMedCrossRef
go back to reference Gruetzmacher, N., Panzer, S., Blandin, Y. & Shea, C.H. (2011). Observation and physical practice: Coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 64(6), 1111–1123. Gruetzmacher, N., Panzer, S., Blandin, Y. & Shea, C.H. (2011). Observation and physical practice: Coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 64(6), 1111–1123.
go back to reference Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204(2), 199–206.CrossRef Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204(2), 199–206.CrossRef
go back to reference Hayes, S. J., Timmis, M. A., & Bennett, S. J. (2009). Eye movements are not a prerequisite for learning movement sequence timing through observation. Acta Psychologica, 131(3), 202–208.PubMedCrossRef Hayes, S. J., Timmis, M. A., & Bennett, S. J. (2009). Eye movements are not a prerequisite for learning movement sequence timing through observation. Acta Psychologica, 131(3), 202–208.PubMedCrossRef
go back to reference Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65(1), 3–14.PubMedCrossRef Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65(1), 3–14.PubMedCrossRef
go back to reference Hermsdörfer, J., Goldenberg, G., Wachsmuth, C., Conrad, B., Ceballos-Baumann, A. O., Bartenstein, P., et al. (2001). Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. Neuroimage, 14(1 Pt 1), 149–161.PubMedCrossRef Hermsdörfer, J., Goldenberg, G., Wachsmuth, C., Conrad, B., Ceballos-Baumann, A. O., Bartenstein, P., et al. (2001). Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. Neuroimage, 14(1 Pt 1), 149–161.PubMedCrossRef
go back to reference Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583.PubMedCrossRef Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583.PubMedCrossRef
go back to reference Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Brain Research. Cognitive Brain Research, 22(2), 233–240.PubMedCrossRef Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Brain Research. Cognitive Brain Research, 22(2), 233–240.PubMedCrossRef
go back to reference Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 55(2), 593–607. Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 55(2), 593–607.
go back to reference Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445.PubMedCrossRef Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445.PubMedCrossRef
go back to reference Hommel, B., Musseler, J., Aschersleben, G. & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–878 (discussion 878–937). Hommel, B., Musseler, J., Aschersleben, G. & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–878 (discussion 878–937).
go back to reference Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12(5), 822–851.CrossRef Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12(5), 822–851.CrossRef
go back to reference Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123(3), 355–371.PubMedCrossRef Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123(3), 355–371.PubMedCrossRef
go back to reference Jellema, T., & Perrett, D. I. (2003a). Perceptual history influences neural responses to face and body postures. Journal of Cognitive Neuroscience, 15(7), 961–971.PubMedCrossRef Jellema, T., & Perrett, D. I. (2003a). Perceptual history influences neural responses to face and body postures. Journal of Cognitive Neuroscience, 15(7), 961–971.PubMedCrossRef
go back to reference Jellema, T., & Perrett, D. I. (2003b). Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion? Neuropsychologia, 41(13), 1728–1737.PubMedCrossRef Jellema, T., & Perrett, D. I. (2003b). Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion? Neuropsychologia, 41(13), 1728–1737.PubMedCrossRef
go back to reference Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501–507.PubMedCrossRef Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501–507.PubMedCrossRef
go back to reference Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.PubMedCrossRef Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.PubMedCrossRef
go back to reference Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience, 29(32), 10153–10159.PubMedCrossRef Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience, 29(32), 10153–10159.PubMedCrossRef
go back to reference Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.PubMedCrossRef Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.PubMedCrossRef
go back to reference Kilner, J. M., Vargas, C., Duval, S., Blakemore, S., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 1299–1301.PubMedCrossRef Kilner, J. M., Vargas, C., Duval, S., Blakemore, S., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 1299–1301.PubMedCrossRef
go back to reference Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12(6), 467–472.PubMedCrossRef Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12(6), 467–472.PubMedCrossRef
go back to reference Knoblich, G., Seigerschmidt, E., Flach, R., & Prinz, W. (2002). Authorship effects in the prediction of handwriting strokes: evidence for action simulation during action perception. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 55(3), 1027–1046. Knoblich, G., Seigerschmidt, E., Flach, R., & Prinz, W. (2002). Authorship effects in the prediction of handwriting strokes: evidence for action simulation during action perception. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 55(3), 1027–1046.
go back to reference Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews. Neuroscience, 7(3), 220–231.PubMedCrossRef Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews. Neuroscience, 7(3), 220–231.PubMedCrossRef
go back to reference Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12(1), 48–55.PubMedCrossRef Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12(1), 48–55.PubMedCrossRef
go back to reference Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64(6), 922–930.PubMedCrossRef Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64(6), 922–930.PubMedCrossRef
go back to reference Krekelberg, B., Dannenberg, S., Hoffmann, K., Bremmer, F., & Ross, J. (2003). Neural correlates of implied motion. Nature, 424(6949), 674–677. Krekelberg, B., Dannenberg, S., Hoffmann, K., Bremmer, F., & Ross, J. (2003). Neural correlates of implied motion. Nature, 424(6949), 674–677.
go back to reference Krekelberg, B., Vatakis, A., & Kourtzi, Z. (2005). Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94(6), 4373–4386. Krekelberg, B., Vatakis, A., & Kourtzi, Z. (2005). Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94(6), 4373–4386.
go back to reference Lingnau, A., Gesierich, B. & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–9930. Lingnau, A., Gesierich, B. & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–9930.
go back to reference Lorteije, J. A. M., Kenemans, J. L., Jellema, T., van der Lubbe, R. H. J., Lommers, M. W. & van Wezel, R. J. A. (2007). Adaptation to real motion reveals direction-selective interactions between real and implied motion processing. Journal of Cognitive Neuroscience, 19(8), 1231–1240. Lorteije, J. A. M., Kenemans, J. L., Jellema, T., van der Lubbe, R. H. J., Lommers, M. W. & van Wezel, R. J. A. (2007). Adaptation to real motion reveals direction-selective interactions between real and implied motion processing. Journal of Cognitive Neuroscience, 19(8), 1231–1240.
go back to reference Maeda, F., Kleiner-Fisman, G., & Pascual-Leone, A. (2002). Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. Journal of Neurophysiology, 87(3), 1329–1335.PubMed Maeda, F., Kleiner-Fisman, G., & Pascual-Leone, A. (2002). Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. Journal of Neurophysiology, 87(3), 1329–1335.PubMed
go back to reference Maslovat, D., Hodges, N. J., Krigolson, O. E., & Handy, T. C. (2010). Observational practice benefits are limited to perceptual improvements in the acquisition of a novel coordination skill. Experimental Brain Research, 204(1), 119–130.CrossRef Maslovat, D., Hodges, N. J., Krigolson, O. E., & Handy, T. C. (2010). Observational practice benefits are limited to perceptual improvements in the acquisition of a novel coordination skill. Experimental Brain Research, 204(1), 119–130.CrossRef
go back to reference Moscatelli, A., Polito, L., & Lacquaniti, F. (2011). Time perception of action photographs is more precise than that of still photographs. Experimental Brain Research, 210(1), 25–32.CrossRef Moscatelli, A., Polito, L., & Lacquaniti, F. (2011). Time perception of action photographs is more precise than that of still photographs. Experimental Brain Research, 210(1), 25–32.CrossRef
go back to reference Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(5), 1076–1083.PubMedCrossRef Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(5), 1076–1083.PubMedCrossRef
go back to reference Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.PubMedCrossRef Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.PubMedCrossRef
go back to reference Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M. & Fried, I. (2010). Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology, 20(8), 750–756. Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M. & Fried, I. (2010). Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology, 20(8), 750–756.
go back to reference Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205(3), 325–334.CrossRef Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205(3), 325–334.CrossRef
go back to reference Orgs, G., Bestmann, S., Schuur, F., & Haggard, P. (2011). From body form to biological motion: the apparent velocity of human movement biases subjective time. Psychological Science, 22(6), 712–717.PubMedCrossRef Orgs, G., Bestmann, S., Schuur, F., & Haggard, P. (2011). From body form to biological motion: the apparent velocity of human movement biases subjective time. Psychological Science, 22(6), 712–717.PubMedCrossRef
go back to reference Orgs, G., Dombrowski, J., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. The European Journal of Neuroscience, 27(12), 3380–3384.PubMedCrossRef Orgs, G., Dombrowski, J., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. The European Journal of Neuroscience, 27(12), 3380–3384.PubMedCrossRef
go back to reference Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008a). The sound of actions in apraxia. Current Biology, 18(22), 1766–1772.PubMedCrossRef Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008a). The sound of actions in apraxia. Current Biology, 18(22), 1766–1772.PubMedCrossRef
go back to reference Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008b). Neural underpinnings of gesture discrimination in patients with limb apraxia. The Journal of Neuroscience, 28(12), 3030–3041.PubMedCrossRef Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008b). Neural underpinnings of gesture discrimination in patients with limb apraxia. The Journal of Neuroscience, 28(12), 3030–3041.PubMedCrossRef
go back to reference Peigneux, P., Salmon, E., van der Linden, M., Garraux, G., Aerts, J., Delfiore, G., et al. (2000). The role of lateral occipitotemporal junction and area MT/V5 in the visual analysis of upper-limb postures. NeuroImage, 11(6 Pt 1), 644–655.PubMedCrossRef Peigneux, P., Salmon, E., van der Linden, M., Garraux, G., Aerts, J., Delfiore, G., et al. (2000). The role of lateral occipitotemporal junction and area MT/V5 in the visual analysis of upper-limb postures. NeuroImage, 11(6 Pt 1), 644–655.PubMedCrossRef
go back to reference Perrett, D. I., Xiao, D., Barraclough, N. E., Keysers, C. & Oram, M.W. (2009). Seeing the future: Natural image sequences produce “anticipatory” neuronal activity and bias perceptual report. Quarterly Journal of Experimental Psychology, 62(11), 2081–2104. Perrett, D. I., Xiao, D., Barraclough, N. E., Keysers, C. & Oram, M.W. (2009). Seeing the future: Natural image sequences produce “anticipatory” neuronal activity and bias perceptual report. Quarterly Journal of Experimental Psychology, 62(11), 2081–2104.
go back to reference Pessoa, L., Thompson, E. & Noë, A. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. The Behavioral and Brain Sciences, 21(6), 723–748 (discussion 748–802). Pessoa, L., Thompson, E. & Noë, A. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. The Behavioral and Brain Sciences, 21(6), 723–748 (discussion 748–802).
go back to reference Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 1867–1871.PubMedCrossRef Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 1867–1871.PubMedCrossRef
go back to reference Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological motion. The European Journal of Neuroscience, 21(10), 2864–2875.PubMedCrossRef Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological motion. The European Journal of Neuroscience, 21(10), 2864–2875.PubMedCrossRef
go back to reference Pobric, G., & Hamilton, A. F. D. C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16(5), 524–529.PubMedCrossRef Pobric, G., & Hamilton, A. F. D. C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16(5), 524–529.PubMedCrossRef
go back to reference Porro, C. A., Facchin, P., Fusi, S., Dri, G., & Fadiga, L. (2007). Enhancement of force after action observation: behavioural and neurophysiological studies. Neuropsychologia, 45(13), 3114–3121.PubMedCrossRef Porro, C. A., Facchin, P., Fusi, S., Dri, G., & Fadiga, L. (2007). Enhancement of force after action observation: behavioural and neurophysiological studies. Neuropsychologia, 45(13), 3114–3121.PubMedCrossRef
go back to reference Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305–310.PubMedCrossRef Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305–310.PubMedCrossRef
go back to reference Press, C., Heyes, C., & Kilner, J. M. (2011). Learning to understand others’ actions. Biology Letters, 7(3), 457–460.PubMedCrossRef Press, C., Heyes, C., & Kilner, J. M. (2011). Learning to understand others’ actions. Biology Letters, 7(3), 457–460.PubMedCrossRef
go back to reference Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRef Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRef
go back to reference Proverbio, A. M., Riva, F., & Zani, A. (2009). Observation of static pictures of dynamic actions enhances the activity of movement-related brain areas. PLoS ONE, 4(5), e5389.PubMedCrossRef Proverbio, A. M., Riva, F., & Zani, A. (2009). Observation of static pictures of dynamic actions enhances the activity of movement-related brain areas. PLoS ONE, 4(5), e5389.PubMedCrossRef
go back to reference Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 358(1431), 435–445.CrossRef Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 358(1431), 435–445.CrossRef
go back to reference Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7(1), 85–90.PubMedCrossRef Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7(1), 85–90.PubMedCrossRef
go back to reference Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17(14), 1201–1207.PubMedCrossRef Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17(14), 1201–1207.PubMedCrossRef
go back to reference Ripoll, H., Kerlirzin, Y., Stein, J., & Reine, B. (1995). Analysis of information processing, decision making, and visual strategies in complex problem solving sport situations. Human Movement Science, 14, 325–349.CrossRef Ripoll, H., Kerlirzin, Y., Stein, J., & Reine, B. (1995). Analysis of information processing, decision making, and visual strategies in complex problem solving sport situations. Human Movement Science, 14, 325–349.CrossRef
go back to reference Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef
go back to reference Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews. Neuroscience, 11(1), 53–60.PubMedCrossRef Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews. Neuroscience, 11(1), 53–60.PubMedCrossRef
go back to reference Schütz-Bosbach, S., & Prinz, W. (2007). Prospective coding in event representation. Cognitive Processing, 8(2), 93–102.PubMedCrossRef Schütz-Bosbach, S., & Prinz, W. (2007). Prospective coding in event representation. Cognitive Processing, 8(2), 93–102.PubMedCrossRef
go back to reference Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: the role of expertise. Psychonomic Bulletin & Review, 16(1), 170–175.CrossRef Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: the role of expertise. Psychonomic Bulletin & Review, 16(1), 170–175.CrossRef
go back to reference Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E. T., Brammer, M., et al. (2000). The functional neuroanatomy of implicit-motion perception or representational momentum. Current Biology, 10(1), 16–22.PubMedCrossRef Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E. T., Brammer, M., et al. (2000). The functional neuroanatomy of implicit-motion perception or representational momentum. Current Biology, 10(1), 16–22.PubMedCrossRef
go back to reference Senior, C., Ward, J., & David, A. S. (2002). Representational momentum and the brain: An investigation into the functional necessity of V5/MT. Visual Cognition, 9(1), 81–92.CrossRef Senior, C., Ward, J., & David, A. S. (2002). Representational momentum and the brain: An investigation into the functional necessity of V5/MT. Visual Cognition, 9(1), 81–92.CrossRef
go back to reference Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 27–36.PubMedCrossRef Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 27–36.PubMedCrossRef
go back to reference Small, S. L., Buccino, G. & Solodkin, A. (2010). The mirror neuron system and treatment of stroke. Developmental Psychobiology. doi:10.1002/dev.20504. Small, S. L., Buccino, G. & Solodkin, A. (2010). The mirror neuron system and treatment of stroke. Developmental Psychobiology. doi:10.​1002/​dev.​20504.
go back to reference Springer, A., Brandstadter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain and Cognition, 76(1), 26–36.PubMedCrossRef Springer, A., Brandstadter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain and Cognition, 76(1), 26–36.PubMedCrossRef
go back to reference Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., et al. (2005). Formation of a motor memory by action observation. The Journal of Neuroscience, 25(41), 9339–9346.PubMedCrossRef Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., et al. (2005). Formation of a motor memory by action observation. The Journal of Neuroscience, 25(41), 9339–9346.PubMedCrossRef
go back to reference Streuber, S., Knoblich, G., Sebanz, N., Bülthoff, H.H. & de la Rosa, S. (2011). The effect of social context on the use of visual information. Experimental Brain Research. doi:10.1007/s00221-011-2830-9. Streuber, S., Knoblich, G., Sebanz, N., Bülthoff, H.H. & de la Rosa, S. (2011). The effect of social context on the use of visual information. Experimental Brain Research. doi:10.​1007/​s00221-011-2830-9.
go back to reference Stürmer, B., Aschersleben, G., & Prinz, W. (2000). Correspondence effects with manual gestures and postures: a study of imitation. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1746–1759.PubMedCrossRef Stürmer, B., Aschersleben, G., & Prinz, W. (2000). Correspondence effects with manual gestures and postures: a study of imitation. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1746–1759.PubMedCrossRef
go back to reference Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRef Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRef
go back to reference Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006a). Motor facilitation during action observation: topographic mapping of the target muscle and influence of the onlooker’s posture. The European Journal of Neuroscience, 23(9), 2522–2530.PubMedCrossRef Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006a). Motor facilitation during action observation: topographic mapping of the target muscle and influence of the onlooker’s posture. The European Journal of Neuroscience, 23(9), 2522–2530.PubMedCrossRef
go back to reference Urgesi, C., Candidi, M., Ionta, S., & Aglioti, S. M. (2007). Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neuroscience, 10(1), 30–31.PubMedCrossRef Urgesi, C., Candidi, M., Ionta, S., & Aglioti, S. M. (2007). Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neuroscience, 10(1), 30–31.PubMedCrossRef
go back to reference Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.PubMedCrossRef Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.PubMedCrossRef
go back to reference Urgesi, C., Moro, V., Candidi, M., & Aglioti, S. M. (2006b). Mapping implied body actions in the human motor system. The Journal of Neuroscience, 26(30), 7942–7949.PubMedCrossRef Urgesi, C., Moro, V., Candidi, M., & Aglioti, S. M. (2006b). Mapping implied body actions in the human motor system. The Journal of Neuroscience, 26(30), 7942–7949.PubMedCrossRef
go back to reference Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584.PubMedCrossRef Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584.PubMedCrossRef
go back to reference Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9(1), 217–232.CrossRef Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9(1), 217–232.CrossRef
go back to reference Vinter, A., & Perruchet, P. (2002). Implicit motor learning through observational training in adults and children. Memory & Cognition, 30(2), 256–261.CrossRef Vinter, A., & Perruchet, P. (2002). Implicit motor learning through observational training in adults and children. Memory & Cognition, 30(2), 256–261.CrossRef
go back to reference Weissensteiner, J., Abernethy, B., Farrow, D., & Müller, S. (2008). The development of anticipation: A cross-sectional examination of the practice experiences contributing to skill in cricket batting. Journal of Sport & Exercise Psychology, 30(6), 663–684. Weissensteiner, J., Abernethy, B., Farrow, D., & Müller, S. (2008). The development of anticipation: A cross-sectional examination of the practice experiences contributing to skill in cricket batting. Journal of Sport & Exercise Psychology, 30(6), 663–684.
go back to reference Wenke, D., & Haggard, P. (2009). How voluntary actions modulate time perception. Experimental Brain Research, 196(1), 311–318.CrossRef Wenke, D., & Haggard, P. (2009). How voluntary actions modulate time perception. Experimental Brain Research, 196(1), 311–318.CrossRef
go back to reference Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.PubMedCrossRef Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.PubMedCrossRef
go back to reference Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2(3), S198–S208.PubMedCrossRef Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2(3), S198–S208.PubMedCrossRef
Metagegevens
Titel
Long- and short-term plastic modeling of action prediction abilities in volleyball
Auteurs
Cosimo Urgesi
Maria Maddalena Savonitto
Franco Fabbro
Salvatore M. Aglioti
Publicatiedatum
01-07-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-011-0383-y

Andere artikelen Uitgave 4/2012

Psychological Research 4/2012 Naar de uitgave