Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2011

01-07-2011 | Original Article

Two-digit number processing: holistic, decomposed or hybrid? A computational modelling approach

Auteurs: K. Moeller, S. Huber, H.-C. Nuerk, K. Willmes

Gepubliceerd in: Psychological Research | Uitgave 4/2011

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Currently, there are three competing theoretical accounts concerning the nature of two-digit number magnitude representation: a holistic, a strictly decomposed, and a hybrid model. Observation of the unit-decade compatibility effect (Nuerk et al. in Cognition 82:B25–B33, 2001) challenged the view of two-digit number magnitude to be represented as one integrated entity. However, at the moment there is no study distinguishing between the decomposed and the hybrid model. The present study addressed this issue using a computational modelling approach. Three network models complying with the constraints of all three theoretical models were programmed and trained on two-digit number comparison. Models were compared as to how well they accounted for empirical effects in the most parsimonious way. Generally, this evaluation indicated that the empirical data were simulated best by the strictly decomposed model. Implications of these results for our understanding of the nature of human number magnitude representation are discussed.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
For each of the three models the arithmetic mean of the simulated RTs was more than 4 standard deviations from the upper time limit indicating that in the vast majority of trials the neural network models had come to a decision well before the time limit was reached.
 
2
Results were identical when using the activation difference between the two output nodes instead of simulated RT as the dependent variable suggesting the present approach of simulating RT to be valid.
 
Literatuur
go back to reference Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: evidence for a linear subjective number scale. Psychological Science, 12, 238–243.PubMedCrossRef Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: evidence for a linear subjective number scale. Psychological Science, 12, 238–243.PubMedCrossRef
go back to reference Brysbaert, M. (1995). Arabic number reading: on the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452.CrossRef Brysbaert, M. (1995). Arabic number reading: on the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452.CrossRef
go back to reference Cantlon, J. F., Cordes, S., Libertus, M. E., & Brannon, E. M. (2009). Numerical abstraction: It ain’t broke. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 331–332. Cantlon, J. F., Cordes, S., Libertus, M. E., & Brannon, E. M. (2009). Numerical abstraction: It ain’t broke. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 331–332.
go back to reference Chrisomalis, S. (2004). A cognitive typology for numerical notation. Cambridge Archaeological Journal, 14, 37–52.CrossRef Chrisomalis, S. (2004). A cognitive typology for numerical notation. Cambridge Archaeological Journal, 14, 37–52.CrossRef
go back to reference Cipolotti, L., & Butterworth, B. (1995). Towards a multiroute model of number processing: impaired number transcoding with the preservation of calculation skills. Journal of Experimental Psychology: General, 124, 375–390.CrossRef Cipolotti, L., & Butterworth, B. (1995). Towards a multiroute model of number processing: impaired number transcoding with the preservation of calculation skills. Journal of Experimental Psychology: General, 124, 375–390.CrossRef
go back to reference Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53, 307–314.PubMedCrossRef Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53, 307–314.PubMedCrossRef
go back to reference Cohen Kadosh, R., & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–373.PubMedCrossRef Cohen Kadosh, R., & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–373.PubMedCrossRef
go back to reference Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16, 16–36.CrossRef Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16, 16–36.CrossRef
go back to reference Dehaene, S. (2009). The case for a notation-independent representation of number. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 333–335. Dehaene, S. (2009). The case for a notation-independent representation of number. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 333–335.
go back to reference Dehaene, S., & Changeux, J.-P. (1993). Development of elementary numerical abilities: A neural model. Journal of Cognitive Neuroscience, 5, 390–407.CrossRef Dehaene, S., & Changeux, J.-P. (1993). Development of elementary numerical abilities: A neural model. Journal of Cognitive Neuroscience, 5, 390–407.CrossRef
go back to reference Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.
go back to reference Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal knowledge and quantitative knowledge of arithmetic. Cortex, 33, 219–250.PubMedCrossRef Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal knowledge and quantitative knowledge of arithmetic. Cortex, 33, 219–250.PubMedCrossRef
go back to reference Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641.PubMedCrossRef Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641.PubMedCrossRef
go back to reference Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.PubMedCrossRef Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.PubMedCrossRef
go back to reference Deloche, G., & Willmes, K. (2000). Cognitive neuropsychological models of adult calculation and number processing: on the role of the surface format of numbers. European Child and Adolescent Psychiatry, 9, 27–40.CrossRef Deloche, G., & Willmes, K. (2000). Cognitive neuropsychological models of adult calculation and number processing: on the role of the surface format of numbers. European Child and Adolescent Psychiatry, 9, 27–40.CrossRef
go back to reference Domahs, F., Delazer, M., & Nuerk, H.-C. (2006). What makes multiplication facts difficult. Problem size or neighbourhood consistency? Experimental Psychology, 53, 275–286.PubMed Domahs, F., Delazer, M., & Nuerk, H.-C. (2006). What makes multiplication facts difficult. Problem size or neighbourhood consistency? Experimental Psychology, 53, 275–286.PubMed
go back to reference Frobisher, L. (1999). Primary school children’s knowledge of odd and even numbers. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 31–48). London: Cassell. Frobisher, L. (1999). Primary school children’s knowledge of odd and even numbers. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 31–48). London: Cassell.
go back to reference Ganor-Stern, D. (2009). Automatic numerical processing is based on an abstract representation. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 337–338. Ganor-Stern, D. (2009). Automatic numerical processing is based on an abstract representation. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 337–338.
go back to reference Ganor-Stern, D., Pinhas, M., & Tzelgov, J. (2009). Comparing two-digit numbers: the importance of being presented together. Quarterly Journal of Experimental Psychology, 62, 444–452. Ganor-Stern, D., Pinhas, M., & Tzelgov, J. (2009). Comparing two-digit numbers: the importance of being presented together. Quarterly Journal of Experimental Psychology, 62, 444–452.
go back to reference Grabner, R. H. (2009). Expertise in symbol-referent mapping. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 338–339. Grabner, R. H. (2009). Expertise in symbol-referent mapping. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 338–339.
go back to reference Grossberg, S., & Repin, D. V. (2003). A neural model of how the brain represents and compares multi-digit numbers: spatial and categorical processes. Neural Networks, 16, 1107–1140.PubMedCrossRef Grossberg, S., & Repin, D. V. (2003). A neural model of how the brain represents and compares multi-digit numbers: spatial and categorical processes. Neural Networks, 16, 1107–1140.PubMedCrossRef
go back to reference Harrington, P. B. (1993). Sigmoid transfer functions in backpropagation neural networks. Analytical Chemistry, 65, 2167–2168.CrossRef Harrington, P. B. (1993). Sigmoid transfer functions in backpropagation neural networks. Analytical Chemistry, 65, 2167–2168.CrossRef
go back to reference Hervás-Martínez, C., Gutiérrez, P. A., Fernández, J. C., Salcedo-Sanz, S., Portilla-Figueras, A., Pérez-Bellido, A., & Prieto, L. (2009). Hyperbolic tangent basis function neural network training by hybrid evolutionary programming for accurate short-term Wind Speed prediction. 2009 Ninth International Conference on Intelligent Systems Design and Applications, 30 November–02 December, Pisa, Italy. Hervás-Martínez, C., Gutiérrez, P. A., Fernández, J. C., Salcedo-Sanz, S., Portilla-Figueras, A., Pérez-Bellido, A., & Prieto, L. (2009). Hyperbolic tangent basis function neural network training by hybrid evolutionary programming for accurate short-term Wind Speed prediction. 2009 Ninth International Conference on Intelligent Systems Design and Applications, 30 November–02 December, Pisa, Italy.
go back to reference Hinrichs, J. V., Yurko, D. S., & Hu, J.-M. (1981). Two-digit number comparison: Use of place information. Journal of Experimental Psychology: Human Perception and Performance, 7, 890–901.CrossRef Hinrichs, J. V., Yurko, D. S., & Hu, J.-M. (1981). Two-digit number comparison: Use of place information. Journal of Experimental Psychology: Human Perception and Performance, 7, 890–901.CrossRef
go back to reference Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., & Gassner, A. (2008). Impairments of the mental number line for two-digit numbers in neglect. Cortex, 44, 429–438.PubMedCrossRef Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., & Gassner, A. (2008). Impairments of the mental number line for two-digit numbers in neglect. Cortex, 44, 429–438.PubMedCrossRef
go back to reference Knops, A. (2006). On the Structure and Neural Correlates of the Numerical Magnitude Representation and its Influence in the Assessment of Verbal Working Memory. Unpublished doctoral dissertation, University Aachen, Germany. Knops, A. (2006). On the Structure and Neural Correlates of the Numerical Magnitude Representation and its Influence in the Assessment of Verbal Working Memory. Unpublished doctoral dissertation, University Aachen, Germany.
go back to reference Kucian, K., & Kaufmann, L. (2009). A developmental model of number representation. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 340–341. Kucian, K., & Kaufmann, L. (2009). A developmental model of number representation. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 340–341.
go back to reference Levenson, E., Tsamir, P., & Tirosh, D. (2007). Neither even nor odd: Sixth grade students’ dilemmas regarding the parity of zero. The Journal of Mathematical Behavior, 26, 83–95.CrossRef Levenson, E., Tsamir, P., & Tirosh, D. (2007). Neither even nor odd: Sixth grade students’ dilemmas regarding the parity of zero. The Journal of Mathematical Behavior, 26, 83–95.CrossRef
go back to reference McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.PubMedCrossRef McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.PubMedCrossRef
go back to reference McCloskey, M., & Lindemann, A. M. (1992). MATHNET: Preliminary results from a distributed model of arithmetic fact retrieval. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 365–409). North Holland: Elsevier.CrossRef McCloskey, M., & Lindemann, A. M. (1992). MATHNET: Preliminary results from a distributed model of arithmetic fact retrieval. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 365–409). North Holland: Elsevier.CrossRef
go back to reference Moeller, K., Fischer, M. H., Nuerk, H.-C., & Willmes, K. (2009). Sequential or parallel decomposed processing of two-digit numbers? Evidence from eye-tracking. Quarterly Journal of Experimental Psychology, 62, 323–334. Moeller, K., Fischer, M. H., Nuerk, H.-C., & Willmes, K. (2009). Sequential or parallel decomposed processing of two-digit numbers? Evidence from eye-tracking. Quarterly Journal of Experimental Psychology, 62, 323–334.
go back to reference Moyer, R. S., & Landauer, T. K. (1967). The time required for judgements of numerical inequality. Nature, 215, 1519–1520.PubMedCrossRef Moyer, R. S., & Landauer, T. K. (1967). The time required for judgements of numerical inequality. Nature, 215, 1519–1520.PubMedCrossRef
go back to reference Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor modelling cognition: a bayesian approach. Psychonomic Bulletin & Review, 4, 79–95. Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor modelling cognition: a bayesian approach. Psychonomic Bulletin & Review, 4, 79–95.
go back to reference Ngaopitakkul, A., & Kunakorn, A. (2009). Selection of proper activation functions in backpropagation neural networks algorithm for transformer internal fault locations. International Journal of Computer and Network Security, 1, 47–55. Ngaopitakkul, A., & Kunakorn, A. (2009). Selection of proper activation functions in backpropagation neural networks algorithm for transformer internal fault locations. International Journal of Computer and Network Security, 1, 47–55.
go back to reference Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC, linguistic markedness of response codes effect. The Quarterly Journal of Experimental Psychology, 57A, 835–863. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC, linguistic markedness of response codes effect. The Quarterly Journal of Experimental Psychology, 57A, 835–863.
go back to reference Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33.PubMedCrossRef Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33.PubMedCrossRef
go back to reference Nuerk, H.-C., Weger, U., & Willmes, K. (2002). A unit-decade compatibility effect in German number words. Current Psychology Letters: Behaviour, Brain, and Cognition, 2, 19–38. Nuerk, H.-C., Weger, U., & Willmes, K. (2002). A unit-decade compatibility effect in German number words. Current Psychology Letters: Behaviour, Brain, and Cognition, 2, 19–38.
go back to reference Nuerk, H.-C., Weger, U., & Willmes, K. (2004). On the perceptual generality of the unit-decade-compatibility effect. Experimental Psychology, 51, 72–79.PubMedCrossRef Nuerk, H.-C., Weger, U., & Willmes, K. (2004). On the perceptual generality of the unit-decade-compatibility effect. Experimental Psychology, 51, 72–79.PubMedCrossRef
go back to reference Nuerk, H.-C., & Willmes, K. (2005). On the magnitude representation of two digit numbers. Psychology Science, 47, 52–72. Nuerk, H.-C., & Willmes, K. (2005). On the magnitude representation of two digit numbers. Psychology Science, 47, 52–72.
go back to reference Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305.PubMedCrossRef Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305.PubMedCrossRef
go back to reference Pixner, S., Moeller, K., Zuber, J., & Nuerk, H.-C. (2009). Decomposed but parallel processing of two-digit numbers in Austrian 1st graders. The Open Psychology Journal, 2, 40–48. Pixner, S., Moeller, K., Zuber, J., & Nuerk, H.-C. (2009). Decomposed but parallel processing of two-digit numbers in Austrian 1st graders. The Open Psychology Journal, 2, 40–48.
go back to reference Ratinckx, E., Nuerk, H.-C., van Dijk, J.-P., & Willmes, K. (2006). Effects of interhemispheric communication on two-digit number processing. Cortex, 42, 1128–1137.PubMedCrossRef Ratinckx, E., Nuerk, H.-C., van Dijk, J.-P., & Willmes, K. (2006). Effects of interhemispheric communication on two-digit number processing. Cortex, 42, 1128–1137.PubMedCrossRef
go back to reference Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (pp. 318–362). Cambridge, MA: MIT Press. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (pp. 318–362). Cambridge, MA: MIT Press.
go back to reference Verguts, T., & De Moor, W. (2005). Two-digit comparison decomposed, holistic or hybrid? Experimental Psychology, 52, 195–200.PubMed Verguts, T., & De Moor, W. (2005). Two-digit comparison decomposed, holistic or hybrid? Experimental Psychology, 52, 195–200.PubMed
go back to reference Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.PubMedCrossRef Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.PubMedCrossRef
go back to reference Verguts, T., & Fias, W. (2006). Lexical and syntactic structures in a connectionist model of reading multi-digit numbers. Connection Science, 18, 265–285.CrossRef Verguts, T., & Fias, W. (2006). Lexical and syntactic structures in a connectionist model of reading multi-digit numbers. Connection Science, 18, 265–285.CrossRef
go back to reference Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin and Review, 12, 66–80.PubMedCrossRef Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin and Review, 12, 66–80.PubMedCrossRef
go back to reference Viscuso, S. R., Anderson, J. A., & Spoehr, K. T. (1989). Representing simple arithmetic in neural networks. In G. Tiberghien (Ed.), Advances in cognitive science (Vol. 2). Chichester (UK): Ellis Horwood. Viscuso, S. R., Anderson, J. A., & Spoehr, K. T. (1989). Representing simple arithmetic in neural networks. In G. Tiberghien (Ed.), Advances in cognitive science (Vol. 2). Chichester (UK): Ellis Horwood.
go back to reference Wood, G., Mahr, M., & Nuerk, H.-C. (2005). Deconstructing and reconstructing the base-10 structure of Arabic numbers. Psychology Science, 47, 84–95. Wood, G., Mahr, M., & Nuerk, H.-C. (2005). Deconstructing and reconstructing the base-10 structure of Arabic numbers. Psychology Science, 47, 84–95.
go back to reference Wood, G., Nuerk, H.-C., & Willmes, K. (2006). Neural representations of two-digit numbers: A parametric fMRI study. NeuroImage, 46, 358–367.CrossRef Wood, G., Nuerk, H.-C., & Willmes, K. (2006). Neural representations of two-digit numbers: A parametric fMRI study. NeuroImage, 46, 358–367.CrossRef
go back to reference Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331–345). New York, NY: Psychology Press. Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331–345). New York, NY: Psychology Press.
go back to reference Zhang, J., & Norman, D. A. (1995). A representational analysis of numeration systems. Cognition, 57, 271–295.PubMedCrossRef Zhang, J., & Norman, D. A. (1995). A representational analysis of numeration systems. Cognition, 57, 271–295.PubMedCrossRef
go back to reference Zhou, X., Chen, C., Chen, L., & Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task. Cognition, 106, 1525–1536.PubMedCrossRef Zhou, X., Chen, C., Chen, L., & Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task. Cognition, 106, 1525–1536.PubMedCrossRef
go back to reference Zorzi, M. & Butterworth, B. (1999). A computational model of number comparison. In: M. Shafto & P. Langley (Hrsg.), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (S.772–777). Mahwah, NJ: Erlbaum. Zorzi, M. & Butterworth, B. (1999). A computational model of number comparison. In: M. Shafto & P. Langley (Hrsg.), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (S.772–777). Mahwah, NJ: Erlbaum.
go back to reference Zorzi, M., Stoianov, I., & Umiltà, C. (2005). Computational modeling of numerical cognition. In J. I. D. Campbell (Hrsg.), Handbook of mathematical cognition (S. 67–83). New York: Psychology Press. Zorzi, M., Stoianov, I., & Umiltà, C. (2005). Computational modeling of numerical cognition. In J. I. D. Campbell (Hrsg.), Handbook of mathematical cognition (S. 67–83). New York: Psychology Press.
Metagegevens
Titel
Two-digit number processing: holistic, decomposed or hybrid? A computational modelling approach
Auteurs
K. Moeller
S. Huber
H.-C. Nuerk
K. Willmes
Publicatiedatum
01-07-2011
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2011
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-010-0307-2

Andere artikelen Uitgave 4/2011

Psychological Research 4/2011 Naar de uitgave