Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2011

01-03-2011 | Original Article

On quantifying multisensory interaction effects in reaction time and detection rate

Auteurs: Stefan Rach, Adele Diederich, Hans Colonius

Gepubliceerd in: Psychological Research | Uitgave 2/2011

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Both mean reaction time (RT) and detection rate (DR) are important measures for assessing the amount of multisensory interaction occurring in crossmodal experiments, but they are often applied separately. Here we demonstrate that measuring multisensory performance using either RT or DR alone misses out on important information. We suggest an integration of RT and DR into a single measure of multisensory performance: the first index (MRE*) is based on an arithmetic combination of RT and DR, the second (MPE) is constructed from parameters derived from fitting a sequential sampling model to RT and DR data simultaneously. Our approach is illustrated by data from two audio–visual experiments. In the first, a redundant targets detection experiment using stimuli of different intensity, both measures yield similar pattern of results supporting the “principle of inverse effectiveness”. The second experiment, introducing stimulus onset asynchrony and differing instructions (focused attention vs. redundant targets task) further supports the usefulness of both indices. Statistical properties of both measures are investigated via bootstrapping procedures.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
Note that both a change of response bias and an change of overall performance can provide evidence for multisensory interaction if their occurrence can be attributed to the additional presentation of the auditory stimulus. In this study, however, our interest is directed towards the latter phenomenon.
 
2
We are aware of the ongoing debate on whether coactivation effects might be located in the motor component (eg., Diederich & Colonius, 1987; Giray & Ulrich, 1993) or not (eg., Miller, Ulrich & Lamarre, 2001; Mordkoff, Miller, & Roch, 1996). However, the purpose of this paper is not to take a stand in this debate, but rather to provide methods to combine different response measures into one single index of overall performance. Hence, base time as defined here does not include components that are influenced by coactivation effects.
 
3
A statistical test for the goodness of fit is given by χ 2(21) = 29.6, p = 0.10 (27 parameters were fitted to 48 data points). Excellent fits were indicated for 5 out of 6 participants (observed χ 2 values of 22.2, 11.9, 21.0, 10.9, and 18.6) and a very poor fit for the sixth participant (observed χ 2 values of 54.6) Note, however, that we did not intend to test the diffusion model with this fit. Instead we utilized the drift rates in a descriptive way to quantify overall performance as indicated by RT and DR.
 
4
SOAs where determined individually for each participant in a pilot study. See section “Stimuli” for details.
 
5
Note that, for constant θ, β, and T r , all δ i  ∈ Δ are independent from each other, thus can be estimated separately.
 
Literatuur
go back to reference Amlôt, R., Walker, R., Driver, J., & Spence, C. (2003). Multimodal visual–somatosensory integration in saccade generation. Neuropsychologica, 41, 1–15.CrossRef Amlôt, R., Walker, R., Driver, J., & Spence, C. (2003). Multimodal visual–somatosensory integration in saccade generation. Neuropsychologica, 41, 1–15.CrossRef
go back to reference Arieh, Y., & Marks, L. E. (2008). Cross-modal interaction between vision and hearing: A speed–accuracy analysis. Perception & Psychophysics, 70, 412–421.CrossRef Arieh, Y., & Marks, L. E. (2008). Cross-modal interaction between vision and hearing: A speed–accuracy analysis. Perception & Psychophysics, 70, 412–421.CrossRef
go back to reference Arndt, P. A., & Colonius, H. (2003). Two stages in crossmodal saccadic integration: Evidence from a visual–auditory focused attention task. Experimental Brain Research, 150, 417–426. Arndt, P. A., & Colonius, H. (2003). Two stages in crossmodal saccadic integration: Evidence from a visual–auditory focused attention task. Experimental Brain Research, 150, 417–426.
go back to reference Baird, J. C. (1984). Information theory and information processing. Information Processing and Management, 20, 373–381.CrossRef Baird, J. C. (1984). Information theory and information processing. Information Processing and Management, 20, 373–381.CrossRef
go back to reference Bernstein, I. H., Chu, P. K., Briggs, P., & Schurman, D. L. (1973). Stimulus intensity and foreperiod effects in intersensory facilitation. Journal of Experimental Psychology, 25, 171–181.CrossRef Bernstein, I. H., Chu, P. K., Briggs, P., & Schurman, D. L. (1973). Stimulus intensity and foreperiod effects in intersensory facilitation. Journal of Experimental Psychology, 25, 171–181.CrossRef
go back to reference Bernstein, I. H., Clark, M. E., & Edelstein, B. A. (1969a). Effects of an auditory signal on visual reaction time. Journal of Experimental Psychology, 80(3), 567–569.CrossRefPubMed Bernstein, I. H., Clark, M. E., & Edelstein, B. A. (1969a). Effects of an auditory signal on visual reaction time. Journal of Experimental Psychology, 80(3), 567–569.CrossRefPubMed
go back to reference Bernstein, I. H., Clark, M. H., & Edelstein, B. A. (1969b). Intermodal effects in choice reaction time. Journal of Experimental Psychology, 81(2), 405–407.CrossRef Bernstein, I. H., Clark, M. H., & Edelstein, B. A. (1969b). Intermodal effects in choice reaction time. Journal of Experimental Psychology, 81(2), 405–407.CrossRef
go back to reference Bernstein, I. H., & Edelstein, B. A. (1971). Effects of some variation in auditory input upon visual choice reaction time. Journal of Experimental Psychology, 87(2), 241–247.CrossRefPubMed Bernstein, I. H., & Edelstein, B. A. (1971). Effects of some variation in auditory input upon visual choice reaction time. Journal of Experimental Psychology, 87(2), 241–247.CrossRefPubMed
go back to reference Bernstein, I. H., Rose, R., & Ashe, V. M. (1970). Energy integration in intersensory facilitation. Journal of Experimental Psychology, 86(2), 196–203.CrossRefPubMed Bernstein, I. H., Rose, R., & Ashe, V. M. (1970). Energy integration in intersensory facilitation. Journal of Experimental Psychology, 86(2), 196–203.CrossRefPubMed
go back to reference Bolognini, N., Frassinetti, F., Serino, A., & Làdavas, E. (2005). “acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs. Experimental Brain Research, 160, 273–282.CrossRef Bolognini, N., Frassinetti, F., Serino, A., & Làdavas, E. (2005). “acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs. Experimental Brain Research, 160, 273–282.CrossRef
go back to reference Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window-of-integration model. Journal of Cognitive Neuroscience, 16(6), 1–10.CrossRef Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window-of-integration model. Journal of Cognitive Neuroscience, 16(6), 1–10.CrossRef
go back to reference Corneil, B. D., Van Wanrooij, M., Munoz, D. P., & Van Opstal, A. J. (2002). Auditory–visual interactions subserving goal-directed saccades in a complex scene. Journal of Neurophysiology, 88(1), 438–454.PubMed Corneil, B. D., Van Wanrooij, M., Munoz, D. P., & Van Opstal, A. J. (2002). Auditory–visual interactions subserving goal-directed saccades in a complex scene. Journal of Neurophysiology, 88(1), 438–454.PubMed
go back to reference Diederich, A. (1992). Intersensory facilitation: Race, superposition, and diffusion models for reaction time to multiple stimuli (Dissertation). Frankfurt: Verlag Peter Lang. Diederich, A. (1992). Intersensory facilitation: Race, superposition, and diffusion models for reaction time to multiple stimuli (Dissertation). Frankfurt: Verlag Peter Lang.
go back to reference Diederich, A. (1995). Intersensory facilitation of reaction time: Evaluation of counter and diffusion coactivation models. Journal of Mathematical Psychology, 39, 197–215.CrossRef Diederich, A. (1995). Intersensory facilitation of reaction time: Evaluation of counter and diffusion coactivation models. Journal of Mathematical Psychology, 39, 197–215.CrossRef
go back to reference Diederich, A. (1997). Dynamic stochastic models for decision making with time constraints. Journal of Mathematical Psychology, 41, 260–274.CrossRefPubMed Diederich, A. (1997). Dynamic stochastic models for decision making with time constraints. Journal of Mathematical Psychology, 41, 260–274.CrossRefPubMed
go back to reference Diederich, A. (2008). A further test of sequential-sampling models that account for payoff effects on response bias in perceptual decision tasks. Perception & Psychophysics, 70, 229–256.CrossRef Diederich, A. (2008). A further test of sequential-sampling models that account for payoff effects on response bias in perceptual decision tasks. Perception & Psychophysics, 70, 229–256.CrossRef
go back to reference Diederich, A., & Busemeyer, J. R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time and simple response time. Journal of Mathematical Psychology, 47, 304–322.CrossRef Diederich, A., & Busemeyer, J. R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time and simple response time. Journal of Mathematical Psychology, 47, 304–322.CrossRef
go back to reference Diederich, A., & Busemeyer, J. R. (2006). Modeling the effects of payoff on response bias in a perceptual discrimination task: Threshold-bound, drift-rate-change, or two-stage-processing hypothesis. Perception & Psychophysics, 68, 194–207.CrossRef Diederich, A., & Busemeyer, J. R. (2006). Modeling the effects of payoff on response bias in a perceptual discrimination task: Threshold-bound, drift-rate-change, or two-stage-processing hypothesis. Perception & Psychophysics, 68, 194–207.CrossRef
go back to reference Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the motor component? A reaction time analysis. Psychological Research, 49, 23–29.CrossRef Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the motor component? A reaction time analysis. Psychological Research, 49, 23–29.CrossRef
go back to reference Diederich, A., & Colonius, H. (2004). Bimodal and trimodal multisensory enhancement: Effects of stimulus onset and intensity on reaction time. Perception & Psychophysics, 66(8), 1388–1404.CrossRef Diederich, A., & Colonius, H. (2004). Bimodal and trimodal multisensory enhancement: Effects of stimulus onset and intensity on reaction time. Perception & Psychophysics, 66(8), 1388–1404.CrossRef
go back to reference Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–75.CrossRef Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–75.CrossRef
go back to reference Eimer, M. (2001). Crossmodal links in spatial attention between vision, audition, and touch: evidence from event-related brain potentials. Neuropsychologia, 39, 1292–1303.CrossRefPubMed Eimer, M. (2001). Crossmodal links in spatial attention between vision, audition, and touch: evidence from event-related brain potentials. Neuropsychologia, 39, 1292–1303.CrossRefPubMed
go back to reference Fitts, P. M. (1966). Cognitive aspects of information processing. III. Set for speed versus accuracy. Journal of Experimental Psychology, 71, 849–857.CrossRefPubMed Fitts, P. M. (1966). Cognitive aspects of information processing. III. Set for speed versus accuracy. Journal of Experimental Psychology, 71, 849–857.CrossRefPubMed
go back to reference Frassinetti, F., Bolognini, N., & Làdavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147, 332–343.CrossRef Frassinetti, F., Bolognini, N., & Làdavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147, 332–343.CrossRef
go back to reference Frens, M. A., Van Opstal, A. J., & Van der Willigen, R. F. (1995). Spatial and temporal factors determine auditory–visual interaction in human saccadic eye movements. Perception & Psychophysics, 57(6), 802–816.CrossRef Frens, M. A., Van Opstal, A. J., & Van der Willigen, R. F. (1995). Spatial and temporal factors determine auditory–visual interaction in human saccadic eye movements. Perception & Psychophysics, 57(6), 802–816.CrossRef
go back to reference Gielen, S. C. A. M., Schmidt, R. A., & Van den Heuvel, P. J. M. (1983). On the nature of intersensory facilitation of reaction time. Perception & Psychophysics, 34(2), 161–168.CrossRef Gielen, S. C. A. M., Schmidt, R. A., & Van den Heuvel, P. J. M. (1983). On the nature of intersensory facilitation of reaction time. Perception & Psychophysics, 34(2), 161–168.CrossRef
go back to reference Gillmeister, H., & Eimer, M. (2007). Tactile enhancement of auditory detection and perceived loudness. Brain Research, 1160, 58–68.CrossRefPubMed Gillmeister, H., & Eimer, M. (2007). Tactile enhancement of auditory detection and perceived loudness. Brain Research, 1160, 58–68.CrossRefPubMed
go back to reference Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by response force in divided and focused attention. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1278–1291.CrossRefPubMed Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by response force in divided and focused attention. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1278–1291.CrossRefPubMed
go back to reference Gomez, P., Ratcliff, R., & Perea, M. (2007). A model of the go/no-go task. Journal of Experimental Psychology: General, 136, 389–413.CrossRef Gomez, P., Ratcliff, R., & Perea, M. (2007). A model of the go/no-go task. Journal of Experimental Psychology: General, 136, 389–413.CrossRef
go back to reference Harrington, L.K., & Peck, C.K. (1998). Spatial disparity affects visual–auditory interactions in human sensorimotor processing. Experimental Brain Research, 122, 247–252.CrossRef Harrington, L.K., & Peck, C.K. (1998). Spatial disparity affects visual–auditory interactions in human sensorimotor processing. Experimental Brain Research, 122, 247–252.CrossRef
go back to reference Hershenson, M. (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63(3), 289–293.CrossRefPubMed Hershenson, M. (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63(3), 289–293.CrossRefPubMed
go back to reference Hick, W. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psycholology, 4, 11–26.CrossRef Hick, W. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psycholology, 4, 11–26.CrossRef
go back to reference Hilgard, E. R. (1933). Reinforcement and inhibition of eyelid reflexes. Journal of General Psychology, 8, 85–113.CrossRef Hilgard, E. R. (1933). Reinforcement and inhibition of eyelid reflexes. Journal of General Psychology, 8, 85–113.CrossRef
go back to reference Holmes, N. P. (2009). The principle of inverse effectiveness in multisensory integration: Some statistical considerations. Brain Topography, 21, 168–176.CrossRefPubMed Holmes, N. P. (2009). The principle of inverse effectiveness in multisensory integration: Some statistical considerations. Brain Topography, 21, 168–176.CrossRefPubMed
go back to reference Jepma, M., Wagenmakers, E.-J., Band, G. P. H., & Nieuwenhuis, S. (2008). The effects of accessory stimuli on information processing: Evidence from electrophysiology and a diffusion model analysis. Journal of Cognitive Neuroscience, 21, 847–864.CrossRef Jepma, M., Wagenmakers, E.-J., Band, G. P. H., & Nieuwenhuis, S. (2008). The effects of accessory stimuli on information processing: Evidence from electrophysiology and a diffusion model analysis. Journal of Cognitive Neuroscience, 21, 847–864.CrossRef
go back to reference Kitagawa, N., & Spence, C. (2005). Investigating the effect of a transparent barrier on the crossmodal congruency effect. Experimental Brain Research, 161, 62–71.CrossRef Kitagawa, N., & Spence, C. (2005). Investigating the effect of a transparent barrier on the crossmodal congruency effect. Experimental Brain Research, 161, 62–71.CrossRef
go back to reference Lovelace, C. T., Stein, B. E., & Wallace, M. T. (2003). An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Cognitive Brain Research, 17, 447–453.CrossRefPubMed Lovelace, C. T., Stein, B. E., & Wallace, M. T. (2003). An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Cognitive Brain Research, 17, 447–453.CrossRefPubMed
go back to reference Luce, R. D. (1986). Response times: Their role in inferring elementary mental organisation. Oxford Psychology Series; no. 8. New York: Oxford University Press. Luce, R. D. (1986). Response times: Their role in inferring elementary mental organisation. Oxford Psychology Series; no. 8. New York: Oxford University Press.
go back to reference Luce, R. D. (2003). Whatever happened to information theory in psychology? Review of General Psychology, 7, 183–188.CrossRef Luce, R. D. (2003). Whatever happened to information theory in psychology? Review of General Psychology, 7, 183–188.CrossRef
go back to reference Meredith, M. A., Nemitz, J. W., & Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuroscience, 7(10), 3215–3229.PubMed Meredith, M. A., Nemitz, J. W., & Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuroscience, 7(10), 3215–3229.PubMed
go back to reference Meredith, M. A. & Stein, B. E. (1986). Visual, auditory and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56(3), 640–662.PubMed Meredith, M. A. & Stein, B. E. (1986). Visual, auditory and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56(3), 640–662.PubMed
go back to reference Miller, J. O. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279.CrossRefPubMed Miller, J. O. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279.CrossRefPubMed
go back to reference Miller, J. O. (1986). Time course of coactivation in bimodal divided attention. Perception & Psychophysics, 40(5), 331–343.CrossRef Miller, J. O. (1986). Time course of coactivation in bimodal divided attention. Perception & Psychophysics, 40(5), 331–343.CrossRef
go back to reference Miller, J. O., Ulrich, R., & Lamarre, Y. (2001). Locus of the redundant-signals effect in bimodal divided attention: a neurophysiological analysis. Perception & Psychophysics, 63(3), 555–562.CrossRef Miller, J. O., Ulrich, R., & Lamarre, Y. (2001). Locus of the redundant-signals effect in bimodal divided attention: a neurophysiological analysis. Perception & Psychophysics, 63(3), 555–562.CrossRef
go back to reference Mordkoff, J. T., Miller, J., & Roch, A.-C. (1996). Absence of coactivation in the motor component: evidence from psychophysiological measures of target detection. JJournal of Experimental Psychology: Human Perception and Performance, 22(1), 25–41.CrossRefPubMed Mordkoff, J. T., Miller, J., & Roch, A.-C. (1996). Absence of coactivation in the motor component: evidence from psychophysiological measures of target detection. JJournal of Experimental Psychology: Human Perception and Performance, 22(1), 25–41.CrossRefPubMed
go back to reference Morrell, E. K. (1968). Temporal characteristics of sensory interaction in choice reaction times. Journal of Experimental Psychology, 77(1), 14–18.CrossRefPubMed Morrell, E. K. (1968). Temporal characteristics of sensory interaction in choice reaction times. Journal of Experimental Psychology, 77(1), 14–18.CrossRefPubMed
go back to reference Nickerson, R. S. (1973). Intersensory facilitation of reaction time: Energy summation or preparation enhancement. Psychological Review, 80, 489–509.CrossRefPubMed Nickerson, R. S. (1973). Intersensory facilitation of reaction time: Energy summation or preparation enhancement. Psychological Review, 80, 489–509.CrossRefPubMed
go back to reference Perrault, T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. J Neurophysiology, 93, 2575–2586.CrossRef Perrault, T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. J Neurophysiology, 93, 2575–2586.CrossRef
go back to reference Proctor, R. W., & Vu, K.-P.L. (2006). The cognitive revolution at age 50: Has the promise of the human information-processing approach been fulfilled? International Journal of Human–Computer Interaction, 21, 253–284.CrossRef Proctor, R. W., & Vu, K.-P.L. (2006). The cognitive revolution at age 50: Has the promise of the human information-processing approach been fulfilled? International Journal of Human–Computer Interaction, 21, 253–284.CrossRef
go back to reference Rach, S., & Diederich, A. (2006). Visual–tactile integration: does stimulus duration influence the relative amount of response enhancement? Experimental Brain Research, 173, 514–520.CrossRef Rach, S., & Diederich, A. (2006). Visual–tactile integration: does stimulus duration influence the relative amount of response enhancement? Experimental Brain Research, 173, 514–520.CrossRef
go back to reference Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333–367.CrossRefPubMed Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333–367.CrossRefPubMed
go back to reference Röder, B., Kusmierek, A., Spence, C., & Schicke, T. (2007). Developmental vision determines the reference frame for the multisensory control of action. PNAS, 104, 4753–4758.CrossRefPubMed Röder, B., Kusmierek, A., Spence, C., & Schicke, T. (2007). Developmental vision determines the reference frame for the multisensory control of action. PNAS, 104, 4753–4758.CrossRefPubMed
go back to reference Schwarz, W. (1994). Diffusion, superposition, and the redundant-targets effect. Journal of Mathematical Psychology, 38, 504–520.CrossRef Schwarz, W. (1994). Diffusion, superposition, and the redundant-targets effect. Journal of Mathematical Psychology, 38, 504–520.CrossRef
go back to reference Shore, D. I., Barnes, M. E., & Spence, C. (2006). Temporal aspects of the visuotactile congruency effect. Neuroscience Letters, 392, 96–100.CrossRefPubMed Shore, D. I., Barnes, M. E., & Spence, C. (2006). Temporal aspects of the visuotactile congruency effect. Neuroscience Letters, 392, 96–100.CrossRefPubMed
go back to reference Spence, C., McGlone, F. P., Kettenmann, B., & Kobal, G. (2001). Attention to olfaction: A psychophysical investigation. Experimental Brain Research, 138, 432–437.CrossRef Spence, C., McGlone, F. P., Kettenmann, B., & Kobal, G. (2001). Attention to olfaction: A psychophysical investigation. Experimental Brain Research, 138, 432–437.CrossRef
go back to reference Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. London, Cambridge: The MIT Press. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. London, Cambridge: The MIT Press.
go back to reference Townsend, J. T., & Ashby, F. G. (1983). Stochastic modelling of elementary psychological processes. New York: Cambridge Univ Press. Townsend, J. T., & Ashby, F. G. (1983). Stochastic modelling of elementary psychological processes. New York: Cambridge Univ Press.
go back to reference Townsend, J. T., & Honey, C. J. (2007). Consequences of base time for redundant signals experiments. Journal of Mathematical Psychology, 51, 242–265.CrossRefPubMed Townsend, J. T., & Honey, C. J. (2007). Consequences of base time for redundant signals experiments. Journal of Mathematical Psychology, 51, 242–265.CrossRefPubMed
go back to reference Walker, R., Deubel, H., Schneider, W. X., & Findlay, J. M. (1997). Effect of remote distractors on saccade programming: Evidence for an extended fixation zone. Journal of Neurophysiology, 78, 1108–1119.PubMed Walker, R., Deubel, H., Schneider, W. X., & Findlay, J. M. (1997). Effect of remote distractors on saccade programming: Evidence for an extended fixation zone. Journal of Neurophysiology, 78, 1108–1119.PubMed
go back to reference Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329.CrossRef Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329.CrossRef
go back to reference Woodworth, R. S., & Schlosberg, H. (1956). Experimental psychology (rev. ed.). New York: Holt. Woodworth, R. S., & Schlosberg, H. (1956). Experimental psychology (rev. ed.). New York: Holt.
Metagegevens
Titel
On quantifying multisensory interaction effects in reaction time and detection rate
Auteurs
Stefan Rach
Adele Diederich
Hans Colonius
Publicatiedatum
01-03-2011
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2011
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-010-0289-0

Andere artikelen Uitgave 2/2011

Psychological Research 2/2011 Naar de uitgave