Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2009

01-03-2009 | Original Article

Distinct, but top-down modulable color and positional priming mechanisms in visual pop-out search

Auteurs: Thomas Geyer, Hermann J. Müller

Gepubliceerd in: Psychological Research | Uitgave 2/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Three experiments examined reaction time (RT) performance in visual pop-out search. Search displays comprised of one color target and two distractors which were presented at 24 possible locations on a circular ellipse. Experiment 1 showed that re-presentation of the target at a previous target location led to expedited RTs, whereas presentation of the target at a distractor location led to slowed RTs (relative to target presentation at a previous empty location). RTs were also faster when the color of the target was the same across consecutive trials, relative to a change of the target’s color. This color priming was independent of the positional priming. Experiment 2 revealed larger positional facilitation, relative to Experiment 1, when position repetitions occurred more likely than chance level; analogously, Experiment 3 revealed stronger color priming effects when target color repetitions were more likely. These position and color manipulations did not change the pattern of color (Experiment 2) and positional priming effects (Experiment 3). While these results support the independency of color and positional priming effects (e.g., Maljkovic and Nakayama in Percept Psychophys 58:977–991, 1996), they also show that these (largely ‘automatic’) effects are top-down modulable when target position and color are predictable (e.g., Müller et al. in Vis Cogn 11:577–602, 2004).
Voetnoten
1
This alternative explanation may, in principle, also hold for the pattern of positional priming effects found in Experiments 1–3: positional priming effects may have been reduced in Experiments 1 (baseline) and 3 (predictable target color) relative to Experiment 2 (predictable target position) because, in the latter, the probability of an intervening trial (between the critical trials N − j and N) containing a same-position target was higher than the probability of a different-position target [Experiments 1 and 3: p(same-position) = 0.04, p(different position) = 0.96; Experiment 2: p(same-position) = 0.40, p(different position) = 0.60; values for Experiment 2 collapsed across trials N − 1 through N − 5]. Unfortunately, an analogous analysis to that of color priming effects (with pure sequences of same-color trials) could not be conducted for the position priming effects, because the number of pure position repetition sequences was too low in Experiments 1 and 3 to permit statistical examination. However, previous findings suggest that the relative proportions of same- and different-position trials do not affect the temporal extension of positional priming (Maljkovic and Nakayama 1996). Specifically, Maljkovic and Nakayama (1996; Experiment 2) showed that positional priming extended back 5–8 trials – importantly, independently of whether there were 6 or 12 possible target locations. That is, doubling the probability with which a given target position is repeated did not change the temporal extension of positional priming.
 
2
Of course, this does not rule out other accounts of inter-trial priming effects in terms of the retrieval of task-relevant episodic memories attributing repetition benefits at stages following focal attentional selection (i.e., stimulus-response translation; e.g., Logan, 1990, 2002; Neill, 1997; Waszak, Hommel, & Allport, 2003).
 
Literatuur
go back to reference Braithwaite, J. J., Humphreys, G. W., Hulleman, J., & Watson, D. G. (2007). Fast color grouping and slow color inhibition: Evidence for distinct temporal windows for separate processes in preview search. Journal of Experimental Psychology: Human Perception and Performance, 33, 503–517.PubMedCrossRef Braithwaite, J. J., Humphreys, G. W., Hulleman, J., & Watson, D. G. (2007). Fast color grouping and slow color inhibition: Evidence for distinct temporal windows for separate processes in preview search. Journal of Experimental Psychology: Human Perception and Performance, 33, 503–517.PubMedCrossRef
go back to reference Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.PubMedCrossRef Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.PubMedCrossRef
go back to reference Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4, 435–443.PubMedCrossRef Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4, 435–443.PubMedCrossRef
go back to reference Geyer, T., Müller, H. J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features. Perception & Psychophysics, 68, 736–749. Geyer, T., Müller, H. J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features. Perception & Psychophysics, 68, 736–749.
go back to reference Geyer, T., Müller, H. J., & Krummenacher, J. (2007). Cross-trial priming of element positions in pop-out visual search is dependent on regular stimulus arrangement. Journal of Experimental Psychology: Human Perception & Performance, 33, 788–797.CrossRef Geyer, T., Müller, H. J., & Krummenacher, J. (2007). Cross-trial priming of element positions in pop-out visual search is dependent on regular stimulus arrangement. Journal of Experimental Psychology: Human Perception & Performance, 33, 788–797.CrossRef
go back to reference Hillstrom, A. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–817. Hillstrom, A. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–817.
go back to reference Huang, L., Holcombe, A. O., & Pashler, H. (2004). Repetition priming in visual search: Episodic retrieval, not feature priming. Memory and Cognition, 32, 12–20. Huang, L., Holcombe, A. O., & Pashler, H. (2004). Repetition priming in visual search: Episodic retrieval, not feature priming. Memory and Cognition, 32, 12–20.
go back to reference Ihaka, R., & Gentlemen, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299–314.CrossRef Ihaka, R., & Gentlemen, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299–314.CrossRef
go back to reference Klein, R. M., Munoz, D. P., Dorris, M. C., & Taylor, T. L. (2001). Inhibition of return in monkey and man. In C. Folk & B. Gibson (Eds.), Attraction, Distraction, and Action: Multiple Perspectives on Attention Capture (pp. 27–47). Amsterdam: Elsevier.CrossRef Klein, R. M., Munoz, D. P., Dorris, M. C., & Taylor, T. L. (2001). Inhibition of return in monkey and man. In C. Folk & B. Gibson (Eds.), Attraction, Distraction, and Action: Multiple Perspectives on Attention Capture (pp. 27–47). Amsterdam: Elsevier.CrossRef
go back to reference Kristjánsson, A., Wang, D., & Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85, 37–52.PubMedCrossRef Kristjánsson, A., Wang, D., & Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85, 37–52.PubMedCrossRef
go back to reference Kristjánsson, A., Vuilleumier, P., Malhotra, P., Husain, M., & Driver, J. (2005). Priming of Color and Position during Visual Search in Unilateral Spatial Neglect. Journal of Cognitive Neuroscience, 17, 859–873.PubMedCrossRef Kristjánsson, A., Vuilleumier, P., Malhotra, P., Husain, M., & Driver, J. (2005). Priming of Color and Position during Visual Search in Unilateral Spatial Neglect. Journal of Cognitive Neuroscience, 17, 859–873.PubMedCrossRef
go back to reference Kristjánsson, A., Vuilleumier, P., Schwartz, S., Macaluso, E., & Driver, J. (2007). Neural basis for priming of pop-out during visual search revealed with fMRI. Cerebral Cortex, 17, 1612–1624.PubMedCrossRef Kristjánsson, A., Vuilleumier, P., Schwartz, S., Macaluso, E., & Driver, J. (2007). Neural basis for priming of pop-out during visual search revealed with fMRI. Cerebral Cortex, 17, 1612–1624.PubMedCrossRef
go back to reference Logan, G. (1990). Repetition priming and automaticity: Common underlying mechanisms? Cognitive Psychology, 22, 1–35.CrossRef Logan, G. (1990). Repetition priming and automaticity: Common underlying mechanisms? Cognitive Psychology, 22, 1–35.CrossRef
go back to reference Logan, G. (2002). An instance theory of attention and memory. Psychological Review, 109, 376–400.PubMedCrossRef Logan, G. (2002). An instance theory of attention and memory. Psychological Review, 109, 376–400.PubMedCrossRef
go back to reference Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.
go back to reference Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977–991. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977–991.
go back to reference Maljkovic, V., & Nakayama, K. (2000). Priming of pop-out: III. A short-term memory system beneficial for rapid target selection. Visual Cognition, 7, 571–595.CrossRef Maljkovic, V., & Nakayama, K. (2000). Priming of pop-out: III. A short-term memory system beneficial for rapid target selection. Visual Cognition, 7, 571–595.CrossRef
go back to reference McCarley, J. S., & He, Z. J. (2001). Sequential priming of 3-D perceptual organization. Perception & Psychophysics, 63, 195–208. McCarley, J. S., & He, Z. J. (2001). Sequential priming of 3-D perceptual organization. Perception & Psychophysics, 63, 195–208.
go back to reference Müller, H. J., Krummenacher, J., & Heller, D. (2004). Dimension-specific inter-trial facilitation in visual search for pop-out targets: Evidence for a top-down modulable visual short-term memory effect. Visual Cognition, 11, 577–602.CrossRef Müller, H. J., Krummenacher, J., & Heller, D. (2004). Dimension-specific inter-trial facilitation in visual search for pop-out targets: Evidence for a top-down modulable visual short-term memory effect. Visual Cognition, 11, 577–602.CrossRef
go back to reference Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035.PubMedCrossRef Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035.PubMedCrossRef
go back to reference Müller, H. J., & von Mühlenen, A. (2000). Probing distractor inhibition in visual search: Inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 26, 1591–1605.PubMedCrossRef Müller, H. J., & von Mühlenen, A. (2000). Probing distractor inhibition in visual search: Inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 26, 1591–1605.PubMedCrossRef
go back to reference Müller, H. J., von Mühlenen, A., & Geyer, T. (2007). Top-down inhibition of search distractors in parallel visual search. Perception and Psychophysics, 69, 1373–1388.PubMed Müller, H. J., von Mühlenen, A., & Geyer, T. (2007). Top-down inhibition of search distractors in parallel visual search. Perception and Psychophysics, 69, 1373–1388.PubMed
go back to reference Neill, W. T. (1997). Episodic retrieval in negative priming and repetition priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1291–1305.CrossRef Neill, W. T. (1997). Episodic retrieval in negative priming and repetition priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1291–1305.CrossRef
go back to reference Ogawa, H., Takeda, Y., & Kumada, T. (2007). Probing attentional modulation of contextual cueing. Visual Cognition, 15, 276–289.CrossRef Ogawa, H., Takeda, Y., & Kumada, T. (2007). Probing attentional modulation of contextual cueing. Visual Cognition, 15, 276–289.CrossRef
go back to reference Segalowitz, S. J., & Graves, R. E. (1990). Suitability of the IBM XT, AT, and PS/2 keyboard, mouse, and game port as response devices in reaction time paradigms. Behavior Research Methods, Instruments and Computers, 22, 283–289. Segalowitz, S. J., & Graves, R. E. (1990). Suitability of the IBM XT, AT, and PS/2 keyboard, mouse, and game port as response devices in reaction time paradigms. Behavior Research Methods, Instruments and Computers, 22, 283–289.
go back to reference Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spatial Vision, 14, 59–75.PubMedCrossRef Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spatial Vision, 14, 59–75.PubMedCrossRef
go back to reference Töllner, T., Gramann, K., Müller, H. J., Kiss, M., & Eimer, M. (2008). Electrophysiological markers of visual dimension changes and response changes. Journal of Experimental Psychology: Human Perception and Performance: 34, 531–542.CrossRef Töllner, T., Gramann, K., Müller, H. J., Kiss, M., & Eimer, M. (2008). Electrophysiological markers of visual dimension changes and response changes. Journal of Experimental Psychology: Human Perception and Performance: 34, 531–542.CrossRef
go back to reference Wang, D. L., Kristjánsson, A., & Nakayama, K. (2005). Efficient visual search without top-down or bottom-up guidance. Perception & Psychophysics, 67, 239–253. Wang, D. L., Kristjánsson, A., & Nakayama, K. (2005). Efficient visual search without top-down or bottom-up guidance. Perception & Psychophysics, 67, 239–253.
go back to reference Waszak, F., Hommel, B., & Allport, A. (2003). Task switching and long-term priming: Role of episodic stimulus-task bindings in task shift costs. Cognitive Psychology, 46, 361–413.PubMedCrossRef Waszak, F., Hommel, B., & Allport, A. (2003). Task switching and long-term priming: Role of episodic stimulus-task bindings in task shift costs. Cognitive Psychology, 46, 361–413.PubMedCrossRef
go back to reference Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29, 483–502.PubMedCrossRef Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29, 483–502.PubMedCrossRef
Metagegevens
Titel
Distinct, but top-down modulable color and positional priming mechanisms in visual pop-out search
Auteurs
Thomas Geyer
Hermann J. Müller
Publicatiedatum
01-03-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0207-x

Andere artikelen Uitgave 2/2009

Psychological Research 2/2009 Naar de uitgave