Skip to main content
Log in

Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The variability of coupled rhythmic limb movements is assumed to be a consequence of the strength of a movement’s attractor dynamic and a constant stochastic noise process that continuously perturbs the movement system away from this dynamic. Recently, it has been suggested that the nonlinear technique of recurrence analysis can be used to index the effects of noise and attractor strength on movement variability. To test this, three experiments were conducted in which the attractor strength of bimanual wrist-pendulum movements (using coordination mode, movement frequency and detuning), as well as the magnitude of stochastic perturbations affecting the variability of these movements (using a temporally fluctuating visual metronome) was manipulated. The results of these experiments demonstrate that recurrence analysis can index parametric changes in the attractor strength of coupled rhythmic limb movements and the magnitude of metronome induced stochastic perturbations independently. The results of Experiments 1 and 2 also support the claim that differences between the variability of inphase and antiphase coordination, and between slow and fast movement frequencies are due to differences in attractor strength. In contrast to the standard assumption that the noise that characterizes interlimb coordination remains constant for different magnitudes of detuning (Δ ω) the results of Experiment 3 suggest that the magnitude of noise increases with increases in |Δ ω|.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York

    Google Scholar 

  • Abraham RH, Shaw CD (1982) Dynamics: the geometry of behavior. Part one: periodic behavior. Ariel Press, Santa Cruz

    Google Scholar 

  • Amazeen EL, Sternad D, Turvey MT (1996) Predicting the nonlinear shift of stable equilibria in interlimb rhythmic coordination. Human Mov Sci 15(4):521–542

    Article  Google Scholar 

  • Amazeen PG, Amazeen EL, Turvey MT (1998) Breaking the reflectional symmetry of interlimb coordination dynamics. J Motor Behav 30(3):199–216

    CAS  Google Scholar 

  • Atay FM, Altintas Y (1999) Recovering smooth dynamics for time series with the aid of recurrence plots. Phys Rev 59:6593–6598

    Article  CAS  Google Scholar 

  • Beek PJ, Beek WJ (1988) Tools for constructing dynamical models of rhythmic movement. Human Mov Sci 7:301–342

    Article  Google Scholar 

  • Beek PJ, Peper CE, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: beyond the Haken–Kelso–Bunz model. Brain Cogn 48(1):149–165

    Article  PubMed  CAS  Google Scholar 

  • Bernstein NA (1967) Coordination and regulation of movements. Pergamon, New York

    Google Scholar 

  • Collins DR, Sternad D, Turvey MT (1996) An experimental note on defining frequency competition in intersegmental coordination dynamics. J Motor Behav 28(4):299–303

    CAS  Google Scholar 

  • Court MLJ, Bennett SJ, Williams AM, Davids K (2002) Local stability in coordinated rhythmic movements: fluctuations and relaxation times. Human Mov Sci 21:39–60

    Article  CAS  Google Scholar 

  • Daffertshofer A (1998) Effects of noise on the phase dynamics of nonlinear oscillators. Phys Rev E 58:327–338

    Article  CAS  Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 5:973–977

    Google Scholar 

  • Frank TD, Beek PJ, Friedrich R (2003) Fokker–Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Phys Rev E 68(2):021912

    Article  CAS  Google Scholar 

  • Frank TD, Beek PJ, Friedrich R (2004) Identifying noise sources of time-delayed feedback systems. Phys Lett A 328(2–3):219–224

    Article  CAS  Google Scholar 

  • Friedrich R, Peinke J (1997) Description of a turbulent cascade by a Fokker-Planck equation. Phys Rev Lett 78:863–866

    Article  Google Scholar 

  • Friedrich R, Peinke J, Renner C (1997) How to quantify deterministic and random influences on the statistics of the foreign exchange market. Phys Rev Lett 84:5224–5227

    Article  Google Scholar 

  • Friedrich R, Siegert S, Peinke J, Lück St, Siefert M, Lindemann M, Raethjen J, Deuschl G, Pfister G (2000) Extracting model equations from experimental data. Phys Lett A 271:217–222

    Article  CAS  Google Scholar 

  • Fuchs A, Kelso JAS (1994) A theoretical note on models of interlimb coordination. J Exp Psycho: Hum Percept Perform 20(5):1088–1097

    Article  CAS  Google Scholar 

  • Fuchs A, Jirsa VK, Haken H, Kelso JAS (1996) Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biol Cybernet 74(1):21–30

    Article  CAS  Google Scholar 

  • Gao J, Hauqing C (2000) On the structures and quantification of recurrence plots. Phys Lett A 270:75–87

    Article  CAS  Google Scholar 

  • Gilmore R (1981) Catastrophe theory for scientists and engineers. Dover, New York

    Google Scholar 

  • Goodman L, Riley MA, Mitra S, Turvey MT (2000) Advantages of rhythmic movements at resonance: minimal active degrees of freedom, minimal noise, and maximal predictability. J Motor Behav 32(1):3–8

    CAS  Google Scholar 

  • Haken H (1977) Synergetics: An introduction. Springer, Berlin

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybernet 51:347–356

    Article  CAS  Google Scholar 

  • Kantz H, Schieber T (1997) Nonlinear time series analysis. University Press, Cambridge

    Google Scholar 

  • Kay BA (1988) The dimensionality of movement trajectories and the degrees of freedom problem: a tutorial. Hum Mov Sci 7(2–4):343–364

    Article  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol: Hum Percept Perform 13(2):178–192

    Article  CAS  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol: Regulat Integr Compar 246:R1000–R1004

    CAS  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Cambridge

  • Kelso JAS, DelColle JD, Schöner G (1990) Action–perception as a pattern formation process. In Jeannerod M (ed) Attention and performance XIII (vol. 5,) Erlbaum Hillsdale, pp. 139–169

  • Kudo K, Park H, Kay BA, Turvey MT (2006) Environmental coupling modulates the attractors of rhythmic coordination. J Exp Psychol: Hum Percept Perform, (in press)

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Kugler PN, Kelso JAS, Turvey MT (1980) On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In Stelmach GE , Requin J (eds) Tutorials in motor behavior North-Holland, Amsterdam pp. 3–47

  • March TK, Chapman SC, Dendy RO (2005) Recurrence plot statistics and the effect of embedding. Phys D 200:171–184

    Article  Google Scholar 

  • Marwan N (2003) Encounters with neighbors: current developments of concepts based on recurrence plots and their applications. Doctoral Thesis, University of Potsdam

  • Marwan N, Thiel M, Nowaczyk NR (2002) Cross recurrence plot based synchronization of time series. Nonlinear Proces Geophys 9:325–331

    Google Scholar 

  • Mitra S, Amazeen PG, Turvey MT (1998) Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Hum Mov Sci 17(1):17–65

    Article  Google Scholar 

  • Mitra S, Riley MA, Turvey MT (1997) Chaos in human rhythmic movement. J Motor Behav 29(3):195–198

    Article  Google Scholar 

  • van Mourik AM, Daffertshofer A, Beek PJ (2006) Deterministic and stochastic features of rhythmic human movement. Biol Cybern 94:233–244

    Article  PubMed  Google Scholar 

  • Park H, Collins DR, Turvey MT (2001) Dissociation of muscular and spatial constraints on patterns of interlimb coordination. J Exp Psycho: Hum Percept Perform 27(1):32–47

    Article  CAS  Google Scholar 

  • Pellecchia GL, Shockley K, Turvey MT (2005) Concurrent cognitive task modulates coordination dynamics. Cogn Sci 29:531–557

    Article  Google Scholar 

  • Post AA, Peper CE, Daffertshofer A, Beek PJ(2000a) Relative phase dynamics in perturbed interlimb coordination: stability and stochasticity. Biol Cybernet 83(5):443–459

    Article  CAS  Google Scholar 

  • Post AA, Peper CE, Beek PJ (2000b) Relative phase dynamics in perturbed interlimb coordination: the effects of frequency and amplitude. Biol Cybernet 83(6):529–542

    Article  CAS  Google Scholar 

  • Repp BH, Penel A (2002) Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J Exp Psychol: Hum Perceptd Perform 28:1085–1099

    Article  Google Scholar 

  • Repp BH, Penel A (2004) Rhythmic movement is attracted ore strongly to auditor than visual rhythms. Psychol Res 68:252–270

    Article  PubMed  Google Scholar 

  • Richardson MJ (2005) Distinguishing the noise and attractor strength of rhythmic and coordinated limb movements using recurrence analysis. Doctoral Thesis, University of Connecticut

  • Richardson MJ, Marsh KL, Schmidt RC (2005) Effects of visual and verbal interaction on unintentional interpersonal coordination. J Exp Psychol: Hum Percept Perform 31(1):62–79

    Article  Google Scholar 

  • Riley MA, Santana MV, Turvey MT (2001) Deterministic variability and stability in detuned bimanual rhythmic coordination. Hum Mov Sci 20(3):343–369

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum LD, Turvey MT (1988) Maintenance tendency in coordinated rhythmic movements: relative fluctuations and phase. Neuroscience 27:289–300

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RC, Shaw BK, Turvey MT (1993) Coupling dynamics in interlimb coordination. J Exp Psycho: Hum Percept Perform 19:397–415

    Article  CAS  Google Scholar 

  • Schmidt RC, Turvey MT (1995) Models for interlimb coordination: equilibria, local analyses, and spectral patterning: comment on Fuchs and Kelso (1994). J Exp Psycho: Hum Percept Perform 21(2):432–443

    Article  CAS  Google Scholar 

  • Schmidt RC, Bienvenu M, Fitzpatrick PA, Amazeen PG (1998) A comparison of intra- and interpersonal interlimb coordination: coordination breakdowns and coupling strength. J Exp Psycho: Hum Percept Perform 24(3):884–900

    Article  CAS  Google Scholar 

  • Scholz JP, Kelso JAS, Schöner G (1987) Nonequilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. Phys Lett A 123:390–394

    Article  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human movement. Biol Cybernet 53:247–257

    Article  Google Scholar 

  • Shockley K (2002) Effects of encoding and retrieval on bimanual rhythmic coordination. Doctoral Thesis, University of Connecticut

  • Shockley K, Turvey MT (2005) Encoding and retrieval during bimanual rhythmic coordination. J Exp Psychol: Learn Memory Cogn. 31:980–990

    Article  Google Scholar 

  • Shockley K, Butwill M, Zbilut JP, Webber CL (2002) Cross recurrence quantification of coupled oscillators. Phys Lett A 305(1–2):59–69

    Article  CAS  Google Scholar 

  • Shockley K, Santana MV, Fowler CA (2003) Mutual interpersonal postural constraints are involved in cooperative conversation. J Exp Psychol: Hum Percept Perform 29(2):326–332

    Article  Google Scholar 

  • Sternad D, Turvey MT, Schmidt RC (1992) Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol Cybern 67:223–231

    Article  PubMed  CAS  Google Scholar 

  • Sternad D, Collins D, Turvey MT (1995) The detuning factor in the dynamics of interlimb rhythmic coordination. Biol Cybern 73(1):27–35

    PubMed  CAS  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, Reading

    Google Scholar 

  • Swinnen SP, Lee TD, Verschueren S, Serrien DJ, Bogaerds H (1997) Interlimb coordination: learning and transfer under different feedback conditions. Hum Mov Sci 16:749–785

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Springer Berlin Heidelberg New York, pp 366–381

  • Temprado JJ, Laurent M (2004) Attentional load associated with performing and stabilizing a between-persons coordination of rhythmic limb movements. Acta Psychol 115:1–16

    Article  Google Scholar 

  • Temprado JJ, Swinnen SP, Carson RG, Tourment A, Laurent M (2003) Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Hum Mov Sci 22:339–363

    Article  PubMed  CAS  Google Scholar 

  • Thiel M, Romano MC, Kurths J, Meucci R, Allaria E, Arecchi FT (2002) Influence of observational noise on the recurrence quantification analysis. Phys D 171:138–152

    Article  Google Scholar 

  • Trulla LL, Giuliani A, Zbilut JP, Webber CL (1996) Recurrence quantification analysis of the logistic equation with transients. Phys Lett A 223(4):255–260

    Article  CAS  Google Scholar 

  • Turvey MT (1990) Coordination. Am Psychol 45(8):938–953

    Article  PubMed  CAS  Google Scholar 

  • Turvey MT, Rosenblum LD, Schmidt RC, Kugler PN (1986) Fluctuations and phase symmetry in coordinated rhythmic movements. J Exp Psychol: Hum Percept Perform 12(4):564–583

    Article  CAS  Google Scholar 

  • Webber CL Jr, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76:965–973

    PubMed  Google Scholar 

  • Webber CL Jr, Zbilut JP (2004) Recurrence quantification analysis of nonlinear dynamical systems. In: Riley MA, Van Orden G (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences pp 26–94. Retrieved from http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp

  • Zbilut JP, Webber CL Jr (1992) Embeddings and delays as derived from quantification of recurrence plots. Phys Lett A 171: 99–203

    Article  Google Scholar 

  • Zbilut JP, Giuliani A, Webber CL Jr (1998) Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys Lett A 246(1–2):122–128

    Article  CAS  Google Scholar 

  • Zbilut JP, Giuliani A, Webber CL Jr (2000) Recurrence quantification analysis as an empirical test to distinguish relatively short deterministic versus random number series. Phys Lett A 267(2–3):174–178

    Article  CAS  Google Scholar 

  • Zbilut JP, Zaldivar-Comenges JM, Strozzi F (2002) Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys Lett A 297(3–4):173–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, M.J., Schmidt, R.C. & Kay, B.A. Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis. Biol Cybern 96, 59–78 (2007). https://doi.org/10.1007/s00422-006-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0104-6

Keywords

Navigation