Skip to main content
Log in

Determinants and reference values of short-term heart rate variability in children

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This paper provides age- and sex-specific reference values for short-term heart rate variability (HRV) data in children by time domain and frequency domain methods. Furthermore, HRV determinants will be determined. In 460 children (5–10 years), 5-minute HRV measurements in supine position were undertaken with Polar chest belts. The data were manually edited and processed with time and frequency domain methods. Age, time point, physical activity (accelerometry), physical fitness (cardiopulmonary fitness, upper and lower limb muscular fitness) and body composition (body mass index, fat%, fat and fat-free mass) were analysed as determinants using multiple regression analysis stratified by sex. Sex- and age-specific reference values were produced. Overall, girls had lower HRV. Age-related parasympathetic increases and sympathetic decreases were seen with sometimes age-related year-to-year wave-like changes in boys. The time point of recording had limited influence on HRV. Of the lifestyle related factors, fatness (only 7 % overweight) was not associated with HRV but fat-free mass, physical activity and in particular physical fitness (over and above activity) had a favourable association by increased parasympathetic activity. Future HRV studies in children should consider age, sex and physical fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BF%:

Body fat percentage

ChiBS:

Children’s body composition and stress

FFT:

Fast Fourier transform

FM:

Fat mass

FFM:

Fat-free mass

HRV:

Heart rate variability

HF:

High frequency

ICC:

Intraclass correlation

LOA:

Limits of agreement

LF:

Low frequency

VO2max:

Maximal oxygen uptake

mRR:

Mean RRI

MVPA:

Moderate-to-vigorous activity

Nu:

Normalized units

PA:

Parasympathetic activity

pNN50:

Percentage of consecutive normal RRI differing more than 50 ms

RMSSD:

Root mean square of successive differences

RRI:

RR intervals

SDNN:

Standard deviation of the normal RRI

SA:

Sympathetic activity

References

  • Bosch NM, Riese H, Dietrich A, Ormel J, Verhulst FC, Oldehinkel AJ (2009) Preadolescents’ somatic and cognitive-affective depressive symptoms are differentially related to cardiac autonomic function and cortisol: the TRAILS study. Psychosom Med 71(9):944–950

    Article  PubMed  Google Scholar 

  • Bouchard C, Rankinen T (2001) Individual differences in response to regular physical activity. Med Sci Sports Exerc 33(6 Suppl):S446–S451 discussion S452–453

    PubMed  CAS  Google Scholar 

  • Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human R–R interval power spectra is largely ignored. J Appl Physiol 75(5):2310–2317

    PubMed  CAS  Google Scholar 

  • Brunetto AF, Roseguini BT, Silva BM, Hirai DM, Guedes DP (2005) Effects of gender and aerobic fitness on cardiac autonomic responses to head-up tilt in healthy adolescents. Pediatr Cardiol 26(4):418–424

    Article  PubMed  CAS  Google Scholar 

  • Buchheit M, Platat C, Oujaa M, Simon C (2007) Habitual physical activity, physical fitness and heart rate variability in preadolescents. Int J Sports Med 28(3):204–210

    Article  PubMed  CAS  Google Scholar 

  • Chandola T, Heraclides A, Kumari M (2010) Psychophysiological biomarkers of workplace stressors. Neurosci Biobehav Rev 35(1):51–57

    Article  PubMed  Google Scholar 

  • Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11(10):1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Council of Europe (1988) Eurofit. Handbook for the EUROFIT tests of physical fitness. Council of Europe, Committee for the Development of Sport, Rome

    Google Scholar 

  • Dencker M, Andersen LB (2011) Accelerometer-measured daily physical activity related to aerobic fitness in children and adolescents. J Sports Sci 29(9):887–895

    Article  PubMed  Google Scholar 

  • Dietrich A, Rosmalen JGM, Althaus M, van Roon AM, Mulder LJM, Minderaa RB, Oldehinkel AJ, Riese H (2010) Reproducibility of heart rate variability and baroreflex sensitivity measurements in children. Biol Psychol 85(1):71–78

    Article  PubMed  Google Scholar 

  • Faulkner MS, Hathaway D, Tolley B (2003) Cardiovascular autonomic function in healthy adolescents. Heart Lung 32(1):10–22

    Article  PubMed  Google Scholar 

  • Finley JP, Nugent ST (1995) Heart-rate-variability in infants, children and young-adults. J Auton Nerv Syst 51(2):103–108

    Article  PubMed  CAS  Google Scholar 

  • Fukuba Y, Sato H, Sakiyama T, Yamaoka Endo M, Yamada M, Ueoka H, Miura A, Koga S et al (2009) Autonomic nervous activities assessed by heart rate variability in pre- and post-adolescent Japanese. J Physiol Anthropol 28(6):269–273

    Article  PubMed  Google Scholar 

  • Galeev AR, Igisheva LN, Kazin EM (2002) Heart rate variability in healthy six- to sixteen-year-old children. Hum Physiol 28(4):428–432

    Article  Google Scholar 

  • Gamelin FX, Baquet G, Berthoin S, Bosquet L (2008) Validity of the polar S810 to measure R–R intervals in children. Int J Sports Med 29(2):134–138

    Article  PubMed  Google Scholar 

  • Goto M, Nagashima M, Baba R, Nagano Y, Yokota M, Nishibata K, Tsuji A (1997) Analysis of heart rate variability demonstrates effects of development on vagal modulation of heart rate in healthy children. J Pediatr 130(5):725–729

    Article  PubMed  CAS  Google Scholar 

  • Gutin B, Howe C, Johnson MH, Humphries MC, Snieder H, Barbeau P (2005) Heart rate variability in adolescents: relations to physical activity, fitness, and adiposity. Med Sci Sports Exerc 37(11):1856–1863

    Article  PubMed  Google Scholar 

  • Hurtig-Wennlof A, Ruiz JR, Harro M, Sjostrom M (2007) Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: the European Youth Heart Study. Eur J Cardiovasc Prev Rehabil 14(4):575–581

    Article  PubMed  Google Scholar 

  • Kaufman CL, Kaiser DR, Steinberger J, Kelly AS, Dengel DR (2007) Relationships of cardiac autonomic function with metabolic abnormalities in childhood obesity. Obesity 15(5):1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Krishnan B, Jeffery A, Metcalf B, Hosking J, Voss L, Wilkin T, Flanagan DE (2009) Gender differences in the relationship between heart rate control and adiposity in young children: a cross-sectional study (EarlyBird 33). Pediatr Diabetes 10(2):127–134

    Article  PubMed  Google Scholar 

  • Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110(16):2307–2312

    Article  PubMed  Google Scholar 

  • Longin E, Dimitriadis C, Shazi S, Gerstner T, Lenz T, Konig S (2009) Autonomic nervous system function in infants and adolescents: impact of autonomic tests on heart rate variability. Pediatr Cardiol 30(3):311–324

    Article  PubMed  Google Scholar 

  • Magagnin V, Bassani T, Bari V, Turiel M, Maestri R, Pinna GD, Porta A (2011) Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol Meas 32(11):1775–1786

    Article  PubMed  Google Scholar 

  • Massin M, vonBernuth G (1997) Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol 18(4):297–302

    Article  PubMed  CAS  Google Scholar 

  • Massin M, Maeyns K, Withofs N, Ravet F, Gerard P (2000) Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 83(2):179–182

    Article  PubMed  CAS  Google Scholar 

  • Michels N, Vanaelst B, Vyncke K, Sioen I, Huybrechts I, De Vriendt T, De Henauw S (2012) Children’s body composition and stress—the ChiBS study: aims, design, methods, population and participation characteristics. Arch Public Health 70(1):17

    Article  PubMed  Google Scholar 

  • Nagai N, Moritani T (2004) Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord 28(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76(1):73–81

    Article  PubMed  Google Scholar 

  • Ortega FB, Artero EG, Ruiz JR, Vicente-Rodriguez G, Bergman P, Hagstromer M, Ottevaere C, Nagy E, Konsta O, Rey-Lopez JP, Polito A, Dietrich S, Plada M, Beghin L, Manios Y, Sjostrom M, Castillo MJ, Group HS et al (2008) Reliability of health-related physical fitness tests in European adolescents. The HELENA Study. Int J Obes 32(Suppl 5):S49–S57

    Article  Google Scholar 

  • Penttila J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Coffeng R, Scheinin H (2001) Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol 21(3):365–376

    Article  PubMed  CAS  Google Scholar 

  • Porta A, Baselli G, Guzzetti S, Pagani M, Malliani A, Cerutti S (2000) Prediction of short cardiovascular variability signals based on conditional distribution. IEEE Trans Biomed Eng 47(12):1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Rabbia F, Silke B, Conterno A, Grosso T, De Vito B, Rabbone I, Chiandussi L, Veglio F (2003) Assessment of cardiac autonomic modulation during adolescent obesity. Obes Res 11(4):541–548

    Article  PubMed  Google Scholar 

  • Silvetti MS, Drago F, Ragonese P (2001) Heart rate variability in healthy children and adolescents is partially related to age and gender. Int J Cardiol 81(2–3):169–174

    Article  PubMed  CAS  Google Scholar 

  • Task Force of ESC/NASPE (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

    Article  Google Scholar 

  • Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141(2):122–131

    Article  PubMed  Google Scholar 

  • Trost SG, Loprinzi PD, Moore R, Pfeiffer KA (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43(7):1360–1368

    Article  PubMed  Google Scholar 

  • Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 31(3):593–601

    Article  PubMed  CAS  Google Scholar 

  • Wallis LA, Healy M, Undy MB, Maconochie I (2005) Age related reference ranges for respiration rate and heart rate from 4 to 16 years. Arch Dis Child 90(11):1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Wells JC, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, Haroun D, Wilson C, Cole TJ, Fewtrell MS (2010) Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20 y. Am J Clin Nutr 91(3):610–618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was done as part of the IDEFICS Study (http://www.idefics.eu). We gratefully acknowledge the financial support of the European Community within the Sixth RTD Framework Programme Contract No. 016181 (FOOD). The information in this document reflects the author’s view and is provided as is. Nathalie Michels is financially supported by the research council of Ghent University (Bijzonder Onderzoeksfonds). Isabelle Sioen and Barbara Vanaelst are financially supported by the Research Foundation—Flanders. The results of the present study do not constitute endorsement by ACSM. The authors want to thank the ChiBS children and their parents for their voluntary participation.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Michels.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michels, N., Clays, E., De Buyzere, M. et al. Determinants and reference values of short-term heart rate variability in children. Eur J Appl Physiol 113, 1477–1488 (2013). https://doi.org/10.1007/s00421-012-2572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2572-9

Keywords

Navigation