Skip to main content

Advertisement

Log in

Autism spectrum disorder in the fragile X premutation state: possible mechanisms and implications

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

This article has been updated

Abstract

There is increasing recognition of the heterogeneity of origin of cases of autism spectrum disorder (ASD) with multiple forms of ASD having been identified over the decades. Among these, a genetic etiology can be identified in 20–40% of cases when a full genetic work-up is completed. The Fragile X premutation state (characterized by the presence of 55–200 CGG repeats in the FMR1 gene) is a relatively newly identified disease state that has since been associated with several disorders including fragile X-associated tremor ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI) and most recently, fragile X-associated neurodevelopmental disorders (FXAND) which commonly includes anxiety and depression. In addition to these associated disorders, extant literature and clinical observations have suggested an association between the premutation state and ASD. In this paper, we review the literature pertinent to this and discuss possible molecular mechanisms that may explain this association. This includes lowered levels of the FMR1 Protein (FMRP), GABA deficits, mitochondrial dysfunction and secondary genetic abnormalities that is seen in premutation carriers as well as their increased vulnerability to environmental stressors. Understanding these mechanisms can facilitate development of targeted treatment for specific sub-groups of ASD and premutation disorders in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not Applicable.

Change history

  • 20 October 2022

    Typographical error in Figure 1. The word ‘increased’ in the box in the right hand side of the figure 1 is spelt wrongly and it has been updated.

Abbreviations

ASD:

Autism spectrum disorder

FXS:

Fragile X syndrome

FMRP:

FMR1 Protein

PM:

Premutation

FMR1 :

Fragile X messenger ribonucleoprotein 1 gene

References

  1. Association D-AP (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Publishing, Arlington

    Book  Google Scholar 

  2. Maenner MJ et al (2021) Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 Sites, United States, 2018. MMWR Surveill Summ 70(11):1–16

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baxter AJ et al (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45(3):601–613

    Article  CAS  PubMed  Google Scholar 

  4. Tammimies K et al (2015) Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA 314(9):895–903

    Article  CAS  PubMed  Google Scholar 

  5. Hyman SL, Levy SE, Myers SM, Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics, 2020. 145(1).

  6. Bagni C, Zukin RS (2019) A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101(6):1070–1088

    Article  CAS  PubMed  Google Scholar 

  7. Kaufmann WE et al (2017) Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics 139(Suppl 3):S194-s206

    Article  PubMed  Google Scholar 

  8. Tassone F et al (2012) FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med 4(12):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saldarriaga W et al (2014) Fragile X syndrome. Colomb Med (Cali) 45(4):190–198

    Article  Google Scholar 

  10. Bagni C et al (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122(12):4314–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verkerk AJ et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  CAS  PubMed  Google Scholar 

  12. Tassone F et al (2000) Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet 66(1):6–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cronister A et al (1991) Heterozygous fragile X female: historical, physical, cognitive, and cytogenetic features. Am J Med Genet 38(2–3):269–274

    Article  CAS  PubMed  Google Scholar 

  14. Sullivan AK et al (2005) Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod 20(2):402–412

    Article  CAS  PubMed  Google Scholar 

  15. Hagerman RJ et al (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57(1):127–130

    Article  CAS  PubMed  Google Scholar 

  16. Jacquemont S et al (2003) Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 72(4):869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacquemont S et al (2004) Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 291(4):460–469

    Article  CAS  PubMed  Google Scholar 

  18. Hagerman RJ, Hagerman P (2016) Fragile X-associated tremor/ataxia syndrome - features, mechanisms and management. Nat Rev Neurol 12(7):403–412

    Article  CAS  PubMed  Google Scholar 

  19. Hagerman RJ et al (2018) Fragile X-associated neuropsychiatric disorders (FXAND). Front Psychiatry 9:564

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roberts JE et al (2009) Mood and anxiety disorders in females with the FMR1 premutation. Am J Med Genet B Neuropsychiatr Genet 150B(1):130–139

    Article  PubMed  Google Scholar 

  21. Roberts JE et al (2016) Trajectory and predictors of depression and anxiety disorders in mothers with the FMR1 premutation. Biol Psychiatry 79(10):850–857

    Article  PubMed  Google Scholar 

  22. Sobesky WE et al (1994) Emotional and neurocognitive deficits in fragile X. Am J Med Genet 51(4):378–385

    Article  CAS  PubMed  Google Scholar 

  23. Chonchaiya W et al (2012) Increased prevalence of seizures in boys who were probands with the FMR1 premutation and co-morbid autism spectrum disorder. Hum Genet 131(4):581–589

    Article  PubMed  Google Scholar 

  24. Bailey DB Jr et al (2008) Co-occurring conditions associated with FMR1 gene variations: findings from a national parent survey. Am J Med Genet A 146A(16):2060–2069

    Article  CAS  PubMed  Google Scholar 

  25. Farzin F et al (2006) Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with the fragile X premutation. J Dev Behav Pediatr 27(2 Suppl):S137–S144

    Article  PubMed  Google Scholar 

  26. Clifford S et al (2007) Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 37(4):738–747

    Article  PubMed  Google Scholar 

  27. Baron-Cohen S et al (2001) The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord 31(1):5–17

    Article  CAS  PubMed  Google Scholar 

  28. White SJ et al (2021) Autistic traits and mental health in women with the fragile-X premutation: maternal status versus genetic risk. Br J Psychiatry 218(1):28–34

    Article  PubMed  Google Scholar 

  29. Losh M et al (2012) Defining genetically meaningful language and personality traits in relatives of individuals with fragile X syndrome and relatives of individuals with autism. Am J Med Genet B Neuropsychiatr Genet 159B(6):660–668

    Article  PubMed  Google Scholar 

  30. Maltman N et al (2021) The phenotypic profile associated with the FMR1 premutation in women: an investigation of clinical-behavioral, social-cognitive, and executive abilities. Front Psychiatry 12:718485

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baker EK et al (2019) Incomplete silencing of full mutation alleles in males with fragile X syndrome is associated with autistic features. Mol Autism 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  32. Harris HK et al. Pathogenic Yield of Genetic Testing in Autism Spectrum Disorder. Pediatrics, 2020. 146(4).

  33. Pinto D et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94(5):677–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Rubeis S et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515(7526):209–215

    Article  PubMed  PubMed Central  Google Scholar 

  35. O’Roak BJ et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Betancur C, Buxbaum JD (2013) SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 4(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157

    Article  CAS  PubMed  Google Scholar 

  38. Sanders SJ et al (2015) Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87(6):1215–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bain JM, Hagerman R J, Pediatric and neurological assessments, in textbook of autism spectrum disorders, E. Hollander, R. Hagerman, and C. Ferretti, Editors. 2022, American Psychiatric Association Publishing: Washington, DC. p. 87–99.

  40. Hagerman RJ, Hagerman PJ (2008) Testing for fragile X gene mutations throughout the life span. JAMA 300(20):2419–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borrie SC et al (2017) Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 18:115–142

    Article  CAS  PubMed  Google Scholar 

  42. Huber KM et al (2015) Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J Neurosci 35(41):13836–13842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Subramanian M et al (2015) Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 9:313

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ludwig AL et al (2014) CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet 23(12):3228–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pretto DI et al (2015) Differential increases of specific FMR1 mRNA isoforms in premutation carriers. J Med Genet 52(1):42–52

    Article  CAS  PubMed  Google Scholar 

  46. Napoli E et al (2018) Impact of FMR1 premutation on neurobehavior and bioenergetics in young monozygotic twins. Front Genet 9:338

    Article  PubMed  PubMed Central  Google Scholar 

  47. Riddle JE et al (1998) Phenotypic involvement in females with the FMR1 gene mutation. Am J Ment Retard 102(6):590–601

    Article  CAS  PubMed  Google Scholar 

  48. Bleuzé L, Triaca V, Borreca A (2021) FMRP-driven neuropathology in autistic spectrum disorder and alzheimer’s disease: a losing game. Front Mol Biosci 8:867

    Article  Google Scholar 

  49. Davidovic L et al (2007) The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet 16(24):3047–3058

    Article  CAS  PubMed  Google Scholar 

  50. Dictenberg JB et al (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14(6):926–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iossifov I et al (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74(2):285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masini E et al. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci, 2020. 21(21).

  53. Waye MMY, Cheng HY (2018) Genetics and epigenetics of autism: a review. Psychiatry Clin Neurosci 72(4):228–244

    Article  PubMed  Google Scholar 

  54. Hagerman R, Hoem G, Hagerman P (2010) Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol Autism 1(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fatemi SH et al (2013) Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex. Mol Autism 4(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fatemi SH, Folsom TD (2011) The role of fragile X mental retardation protein in major mental disorders. Neuropharmacology 60(7–8):1221–1226

    Article  CAS  PubMed  Google Scholar 

  57. Fatemi SH et al (2010) Fragile X mental retardation protein levels are decreased in major psychiatric disorders. Schizophr Res 124(1–3):246–247

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fatemi SH et al (2009) Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 8(1):64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fatemi SH et al (2010) mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 40(6):743–750

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ghose S et al (2011) The GABAβ receptor as a target for antidepressant drug action. Br J Pharmacol 162(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duncan CE et al (2010) Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. J Psychiatr Res 44(10):673–681

    Article  PubMed  Google Scholar 

  62. D’Hulst C et al (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 1121(1):238–245

    Article  CAS  PubMed  Google Scholar 

  63. Gantois I et al (2006) Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 21(2):346–357

    Article  CAS  PubMed  Google Scholar 

  64. Fatemi SH et al (2011) Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken) 294(10):1635–1645

    Article  CAS  Google Scholar 

  65. Yang Y et al (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32(3):249–270

    Article  PubMed  Google Scholar 

  66. Terzi A, Suter DM (2020) The role of NADPH oxidases in neuronal development. Free Radic Biol Med 154:33–47

    Article  CAS  PubMed  Google Scholar 

  67. Yun HR, et al. Roles of Autophagy in Oxidative Stress. Int J Mol Sci, 2020. 21(9).

  68. Valor LM, et al. Molecular pathogenesis and peripheral monitoring of adult fragile X-associated syndromes. Int J Mol Sci, 2021. 22(16).

  69. Song G et al (2016) Altered redox mitochondrial biology in the neurodegenerative disorder fragile X-tremor/ataxia syndrome: use of antioxidants in precision medicine. Mol Med 22:548–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Srinivas US et al (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084

    Article  CAS  PubMed  Google Scholar 

  71. Singh, A., et al., Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 2019. 24(8).

  72. Kaplan ES et al (2012) Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J Neurochem 123(4):613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Todd PK et al (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78(3):440–455

    Article  CAS  PubMed  Google Scholar 

  74. Napoli E et al (2011) Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 20(15):3079–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Napoli E et al (2016) Altered bioenergetics in primary dermal fibroblasts from adult carriers of the FMR1 premutation before the onset of the neurodegenerative disease fragile X-associated tremor/ataxia syndrome. Cerebellum 15(5):552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ross-Inta C et al (2010) Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem J 429(3):545–552

    Article  CAS  PubMed  Google Scholar 

  77. Nobile V et al (2020) Altered mitochondrial function in cells carrying a premutation or unmethylated full mutation of the FMR1 gene. Hum Genet 139(2):227–245

    Article  CAS  PubMed  Google Scholar 

  78. Loesch DZ et al (2017) Novel blood biomarkers are associated with white matter lesions in fragile x- associated tremor/ataxia syndrome. Neurodegener Dis 17(1):22–30

    Article  CAS  PubMed  Google Scholar 

  79. Robin G et al (2017) Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 26(14):2649–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ariza J et al (2015) Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome. Brain Res 1598:88–96

    Article  CAS  PubMed  Google Scholar 

  81. Napoli E et al (2016) Premutation in the fragile X mental retardation 1 (FMR1) gene affects maternal Zn-milk and perinatal brain bioenergetics and scaffolding. Front Neurosci 10:159

    Article  PubMed  PubMed Central  Google Scholar 

  82. Napoli E et al (2020) Characterization of the Metabolic, Clinical and Neuropsychological Phenotype of Female Carriers of the Premutation in the X-Linked FMR1 Gene. Front Mol Biosci 7:578640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Giulivi C et al (2016) Plasma biomarkers for monitoring brain pathophysiology in FMR1 premutation carriers. Front Mol Neurosci 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  84. Giulivi C et al (2010) Mitochondrial dysfunction in autism. JAMA 304(21):2389–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Siddiqui MF, Elwell, and Johnson MH, Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access, 2016. 6(5).

  86. Saxena R et al (2020) Role of environmental factors and epigenetics in autism spectrum disorders. Prog Mol Biol Transl Sci 173:35–60

    Article  CAS  PubMed  Google Scholar 

  87. Chen Y et al (2010) Murine hippocampal neurons expressing Fmr1 gene premutations show early developmental deficits and late degeneration. Hum Mol Genet 19(1):196–208

    Article  CAS  PubMed  Google Scholar 

  88. Wheeler AC et al (2016) Developmental profiles of infants with an FMR1 premutation. J Neurodev Disord 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gallego PK, Burris JL, Rivera SM (2014) Visual motion processing deficits in infants with the fragile X premutation. J Neurodev Disord 6(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nolin SL et al. Deficits in Prenatal Serine Biosynthesis Underlie the Mitochondrial Dysfunction Associated with the Autism-Linked FMR1 Gene. Int J Mol Sci, 2021. 22(11).

  91. Girirajan S, et al. (2010) A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet, 42(3): 203–9.

  92. Kumar RA, et al. (2008) Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet, 17(4): 628–38.

  93. Weiss LA, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med, 2008. 358(7): 667–75.

  94. Hannes FD, et al. (2009) Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet, 46(4): p. 223–32.

  95. Ullmann R et al. (2007) Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Hum Mutat. 28(7): 674–82.

  96. Itsara A et al (2009) Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84(2):148–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lozano R et al (2014) Genomic studies in fragile X premutation carriers. J Neurodev Disord 6(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  98. Conde V et al (2013) Abnormal GABA-mediated and cerebellar inhibition in women with the fragile X premutation. J Neurophysiol 109(5):1315–1322

    Article  CAS  PubMed  Google Scholar 

  99. Bernard PB et al (2013) Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures. Neurobiol Dis 59:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families who have participated in our studies and also the fragile X team including students at the MIND Institute for their excellent collaboration.

Funding

This research was supported by grants from NICHD including HD036071 and the MIND Institute Intellectual and Developmental Disabilities Research Center P50 HD103526. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

RA conceptualized the article, wrote the first draft and subsequent versions of the manuscript. DP was a major contributor to the manuscript and revised versions of the manuscript. RA and DP contributed equally to this paper. RH conceptualized the article and critically reviewed and revised versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramkumar Aishworiya.

Ethics declarations

Conflict of interests

RA and DP have no competing interests pertinent to this publication. RH has received funding from Azrieli Foundation for treatment studies in fragile X syndrome and she has consulted with Zynerba about treatment in fragile X syndrome.

Ethics approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aishworiya, R., Protic, D. & Hagerman, R. Autism spectrum disorder in the fragile X premutation state: possible mechanisms and implications. J Neurol 269, 4676–4683 (2022). https://doi.org/10.1007/s00415-022-11209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11209-5

Keywords

Navigation