Skip to main content
Log in

Gait and upper limb variability in Parkinson’s disease patients with and without freezing of gait

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Patients with Parkinson’s disease (PD) and freezing of gait (FOG) (freezers) demonstrate high gait variability. The objective of this study was to determine whether freezers display a higher variability of upper limb movements and elucidate if these changes correlate with gait. We were the first group to compare directly objectively measured gait and upper limb movement variability of freezers between freezing episodes. Patients with objectively verified FOG (n = 11) and PD patients without FOG (non-freezers) (n = 11) in a non-randomized medication condition (OFF/ON) were analyzed. Uncued antiphasic finger tapping and forearm diadochokinetic movements were analyzed via three-dimensional ultrasound kinematic measurements. Gait variability of straight gait was assessed using ground reaction forces. Freezers had shorter stride length (p = 0.004) and higher stride length variability (p = 0.005) in the medication OFF condition. Movement variability was not different during finger tapping or diadochokinesia between the groups. There was a trend towards more freezing of the upper limb during finger tapping for the freezers (p = 0.07). Variability in stride length generation and stride timing was not associated with variability of upper limb movement in freezers. Our findings demonstrate that: (1) freezers have a higher spatial gait variability between freezing episodes; (2) freezing-like episodes of the upper limb occur in PD patients, and tend to be more pronounced among freezers than non-freezers for finger tapping; (3) spatial and temporal upper extremity variability is equally affected in freezers and non-freezers in an uncued task. Upper limb freezing is not correlated to lower limb freezing, implicating a different pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CoF:

Center of force

CV:

Coefficient of variation

FOG:

Freezing of gait

FOGQ:

Freezing of gait questionnaire

FOUL:

Freezing of the upper limb

ITI:

Inter tap interval

MMSE:

Mini-mental state examination

PD:

Parkinson’s disease

TTD:

Total travel distance

UPDRS:

Unified Parkinson’s Disease Rating Scale

References

  1. Almeida QJ, Wishart LR, Lee TD (2002) Bimanual coordination deficits with Parkinson’s disease: the influence of movement speed and external cueing. Mov Disord 17:30–37

    Article  PubMed  Google Scholar 

  2. Barbe MT, Liebhart L, Runge M, Deyng J, Florin E, Wojtecki L, Schnitzler A, Allert N, Sturm V, Fink GR, Maarouf M, Timmermann L (2011) Deep brain stimulation of the ventral intermediate nucleus in patients with essential tremor: stimulation below intercommissural line is more efficient but equally effective as stimulation above. Exp Neurol 230:131–137

    Article  PubMed  Google Scholar 

  3. Barrett MJ, Wylie SA, Harrison MB, Wooten GF (2010) Handedness and motor symptom asymmetry in Parkinson’s disease. J Neurol Neurosurg Psychiatry 82:1122–1124

    Article  PubMed Central  PubMed  Google Scholar 

  4. Beatty WW, Staton RD, Weir WS, Monson N, Whitaker HA (1989) Cognitive disturbances in Parkinson’s disease. J Geriatr Psychiatry Neurol 2:22–33

    Article  CAS  PubMed  Google Scholar 

  5. Chee R, Murphy A, Danoudis M, Georgiou-Karistianis N, Iansek R (2009) Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain 132:2151–2160

    Article  PubMed  Google Scholar 

  6. Espay AJ, Fasano A, van Nuenen BF, Payne MM, Snijders AH, Bloem BR (2012) “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology 78:454–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fahn S, Elton RL (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. Florham Park, MacMillan Health Care Information, pp 153–163

    Google Scholar 

  8. Fietzek UM, Zwosta J, Schroeteler FE, Ziegler K, Ceballos-Baumann AO (2013) Levodopa changes the severity of freezing in Parkinson’s disease. Parkinsonism Relat Disord 19:894–896

    Article  PubMed  Google Scholar 

  9. Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56:1712–1721

    Article  CAS  PubMed  Google Scholar 

  10. Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD (2000) Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord 6:165–170

    Article  PubMed  Google Scholar 

  11. Giladi N, Tal J, Azulay T, Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe WH, Stocchi F, Tolosa E (2009) Validation of the freezing of gait questionnaire in patients with Parkinson’s disease. Mov Disord 24:655–661

    Article  PubMed  Google Scholar 

  12. Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N (2003) Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp Brain Res 149:187–194

    CAS  PubMed  Google Scholar 

  13. Heremans E, Nieuwboer A, Vercruysse S (2013) Freezing of gait in Parkinson’s disease: where are we now? Curr Neurol Neurosci Rep 13:350

    Article  PubMed  Google Scholar 

  14. Hermsdorfer J, Marquardt C, Wack S, Mai N (1999) Comparative analysis of diadochokinetic movements. J Electromyogr Kinesiol 9:283–295

    Article  CAS  PubMed  Google Scholar 

  15. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Iansek R, Huxham F, McGinley J (2006) The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord 21:1419–1424

    Article  PubMed  Google Scholar 

  17. Kandori A, Yokoe M, Sakoda S, Abe K, Miyashita T, Oe H, Naritomi H, Ogata K, Tsukada K (2004) Quantitative magnetic detection of finger movements in patients with Parkinson’s disease. Neurosci Res 49:253–260

    Article  PubMed  Google Scholar 

  18. Knobl P, Kielstra L, Almeida Q (2011) The relationship between motor planning and freezing of gait in Parkinson’s disease. J Neurol Neurosurg Psychiatry 83:98–101

    Article  PubMed  Google Scholar 

  19. Lamberti P, Armenise S, Castaldo V, de Mari M, Iliceto G, Tronci P, Serlenga L (1997) Freezing gait in Parkinson’s disease. Eur Neurol 38:297–301

    Article  CAS  PubMed  Google Scholar 

  20. Macht M, Kaussner Y, Moller JC, Stiasny-Kolster K, Eggert KM, Kruger HP, Ellgring H (2007) Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov Disord 22:953–956

    Article  PubMed  Google Scholar 

  21. Moreau C, Ozsancak C, Blatt JL, Derambure P, Destee A, Defebvre L (2007) Oral festination in Parkinson’s disease: biomechanical analysis and correlation with festination and freezing of gait. Mov Disord 22:1503–1506

    Article  PubMed  Google Scholar 

  22. Nanhoe-Mahabier W, Snijders AH, Delval A, Weerdesteyn V, Duysens J, Overeem S, Bloem BR (2013) Split-belt locomotion in Parkinson’s disease with and without freezing of gait. Neuroscience 236:110–116

    Article  CAS  PubMed  Google Scholar 

  23. Nanhoe-Mahabier W, Snijders AH, Delval A, Weerdesteyn V, Duysens J, Overeem S, Bloem BR (2011) Walking patterns in Parkinson’s disease with and without freezing of gait. Neuroscience 182:217–224

    Article  CAS  PubMed  Google Scholar 

  24. Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Fieuws S, Broens-Kaucsik E (2001) Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson’s disease. Mov Disord 16:1066–1075

    Article  CAS  PubMed  Google Scholar 

  25. Nieuwboer A, Vercruysse S, Feys P, Levin O, Spildooren J, Swinnen S (2009) Upper limb movement interruptions are correlated to freezing of gait in Parkinson’s disease. Eur J Neurosci 29:1422–1430

    Article  PubMed  Google Scholar 

  26. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744

    Article  PubMed  Google Scholar 

  27. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  28. Plotnik M, Giladi N, Balash Y, Peretz C, Hausdorff JM (2005) Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Ann Neurol 57:656–663

    Article  PubMed  Google Scholar 

  29. Plotnik M, Giladi N, Hausdorff JM (2008) Bilateral coordination of walking and freezing of gait in Parkinson’s disease. Eur J Neurosci 27:1999–2006

    Article  PubMed  Google Scholar 

  30. Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N (2003) Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol 10:391–398

    Article  CAS  PubMed  Google Scholar 

  31. Shine JM, Matar E, Bolitho SJ, Dilda V, Morris TR, Naismith SL, Moore ST, Lewis SJ (2013) Modeling freezing of gait in Parkinson’s disease with a virtual reality paradigm. Gait Posture 38:104–108

    Article  CAS  PubMed  Google Scholar 

  32. Shine JM, Matar E, Ward PB, Frank MJ, Moustafa AA, Pearson M, Naismith SL, Lewis SJ (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain

  33. Snijders AH, Haaxma CA, Hagen YJ, Munneke M, Bloem BR (2012) Freezer or non-freezer: clinical assessment of freezing of gait. Parkinsonism Relat Disord 18:149–154

    Article  PubMed  Google Scholar 

  34. Timmermann L, Braun M, Groiss S, Wojtecki L, Ostrowski S, Krause H, Pollok B, Sudmeyer M, Ploner M, Gross J, Maarouf M, Voges J, Sturm V, Schnitzler A (2008) Differential effects of levodopa and subthalamic nucleus deep brain stimulation on bradykinesia in Parkinson’s disease. Mov Disord 23:218–227

    Article  PubMed  Google Scholar 

  35. Uitti RJ, Baba Y, Whaley NR, Wszolek ZK, Putzke JD (2005) Parkinson disease: handedness predicts asymmetry. Neurology 64:1925–1930

    Article  CAS  PubMed  Google Scholar 

  36. Veilleux LN, Robert M, Ballaz L, Lemay M, Rauch F (2011) Gait analysis using a force-measuring gangway: intrasession repeatability in healthy adults. J Musculoskelet Neuronal Interact 11:27–33

    CAS  PubMed  Google Scholar 

  37. Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Levin O, Wenderoth N, Swinnen SP, Janssens L, Vandenberghe W, Nieuwboer A (2012) Freezing in Parkinson’s disease: a spatiotemporal motor disorder beyond gait. Mov Disord 27:254–263

    Article  PubMed  Google Scholar 

  38. Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Wenderoth N, Swinnen SP, Vandenberghe W, Nieuwboer A (2012) Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait. Neurorehabil Neural Repair 26:636–645

    Article  PubMed  Google Scholar 

  39. Vercruysse S, Spildooren J, Heremans E, Wenderoth N, Swinnen SP, Vandenberghe W, Nieuwboer A (2013) The neural correlates of upper limb motor blocks in Parkinson’s disease and their relation to freezing of gait. Cereb Cortex

  40. Ziv I, Avraham M, Dabby R, Zoldan J, Djaldetti R, Melamed E (1999) Early-occurrence of manual motor blocks in Parkinson’s disease: a quantitative assessment. Acta Neurol Scand 99:106–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients for their cooperation, as well as B. Tutlewski for her support with gait measurements. The study was funded by the German Research Foundation (KFO 219).

Conflicts of interest

M.T.B: received honoraria for speaking engagements from GE Medical and Medtronic Inc. and travel grants from Medtronic Inc.

M.A: none.

A.H.S: Grants: Prinses Beatrix Fonds (PBF), Netherlands Organisation for Health Research and Development (NWO) grant 92.003.490), employment Radboud University Medical Centre (RUNMC) none.

E.F.: none.

E.L.Q.: none.

B.R.B.: RUNMC employment, grants from NWO/ZonMw, PBF, MJ Fox Foundation, Consultancy for GlaxoSmithKline, Boehringer Ingelheim, TEVA, UCB, Novartis.

E.S.: study support by Novotec medical, Pforzheim, Germany.

G.R.F.: GRF serves as an editorial board member of Cortex, Zeitschrift für Neuropsychologie and Fortschritte der Neurologie Psychiatrie; receives royalties from the publication of the book Funktionelle MRT in Psychiatrie und Neurologie and Neurologische Differentialdiagnose; received honoraria for speaking engagements from TEVA, GlaxoSmith-Kline and Boehringer Ingelheim; and receives research support from the Bundesministerium für Bildung und Forschung and the Deutsche Forschungsgemeinschaft.

L.T.: Consulting: Medtronic Inc, Boston Scientific, Bayer Healthcare, UCB Schwarz Pharma Honoraria on sponsored symposia: TEVA Pharma, Lundbeck Pharma, Bracco, Gianni PR, Medas Pharma, UCB Schwarz Pharma, Desitin Pharma, Bayer Vital, Boehringer Ingelheim, GlaxoSmithKline, Eumecom, Orion Pharma, Medtronic, Boston Scientific, Cephalon, Abott, GE Medical, Grants: DFG, BMBF, Manfred und Ursula.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Barbe.

Additional information

M. T. Barbe and M. Amarell contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbe, M.T., Amarell, M., Snijders, A.H. et al. Gait and upper limb variability in Parkinson’s disease patients with and without freezing of gait. J Neurol 261, 330–342 (2014). https://doi.org/10.1007/s00415-013-7199-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-7199-1

Keywords

Navigation