Skip to main content

Advertisement

Log in

Taste in mild cognitive impairment and Alzheimer’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

In this prospective study we investigated the quantitative and qualitative taste function of patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). 29 healthy, elderly subjects, 29 MCI and 30 AD patients were tested using a validated taste test, the “taste strips”. Additionally, odor identification, odor discrimination, odor threshold, the mini-mental state examination (MMSE) and Apo E epsilon 4 status were examined. Regarding taste, there was a significant reduction of total taste scores and also the score for individual tastes on either side of the tongue between controls and MCI/AD patients. There was no significant difference in the taste scores between MCI and AD patients. A taste test may be a useful procedure for differentiating between healthy subjects and patients with MCI/AD in a clinical context. For diagnosing MCI versus AD, further tests such as smell test, MMSE, Apo E epsilon 4 status, FDG-PET and MRI appear to be useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bacon AW, Bondi MW, Salmon DP, Murphy C (1998) Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Ann N Y Acad Sci 855:723–731

    Article  CAS  PubMed  Google Scholar 

  2. Bickel H (2001) Demenzen im höheren Lebensalter: Schätzungen des Vorkommens und der Versorgungskosten. Z Gerontol Geriatr 34:108–115

    Article  CAS  PubMed  Google Scholar 

  3. Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000) The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95:721–725

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140

    CAS  PubMed  Google Scholar 

  6. Carlsson CM (2008) Lessons learned from failed and discontinued clinical trials for the treatment of Alzheimer’s disease: future directions. J Alzheimers Dis 15:327–338

    PubMed  Google Scholar 

  7. Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, DePeau K, Rentz DM, Selkoe DJ, Blacker D, Albert MS, Sperling RA (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 26:10222–10231

    Article  CAS  PubMed  Google Scholar 

  8. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60:1374–1377

    CAS  PubMed  Google Scholar 

  9. Crum RM, Anthony JC, Bassett SS, Folstein MF (1993) Population-based norms for the mini-mental state examination by age and educational level. JAMA 269:2386–2391

    Article  CAS  PubMed  Google Scholar 

  10. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, Desanti S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18:1–11

    Article  PubMed  Google Scholar 

  11. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165

    CAS  PubMed  Google Scholar 

  12. Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, Bell K, Stern Y, Mayeux R (2000) Olfactory deficit in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405

    Article  CAS  PubMed  Google Scholar 

  13. Djordjevic J, Jones-Gotman M, De Sousa K, Chertkow H (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 29:693–706

    Article  PubMed  Google Scholar 

  14. Doty RL, Reyes PF, Gregor T (1987) Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Res Bull 18:597–600

    Article  CAS  PubMed  Google Scholar 

  15. Eibenstein A, Fioretti AB, Simaskou MN, Sucapane P, Mearelli S, Mina C, Amabile G, Fusetti M (2005) Olfactory screening test in mild cognitive impairment. Neurol Sci 26:156–160

    Article  CAS  PubMed  Google Scholar 

  16. Folstein MF, Folstein SE, McHigh PR (1975) Mini mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  17. Friedland RP, Brun A, Budinger TF (1985) Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet 26:228

    Article  Google Scholar 

  18. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367:1262–1270

    Article  PubMed  Google Scholar 

  19. Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80:S160–S167

    Article  PubMed  Google Scholar 

  20. Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf S (1996) “Sniffin sticks”: screening of olfactory performance. Rhinology 34:222–226

    CAS  PubMed  Google Scholar 

  21. Koss E, Friedland RP, Ober BA, Jagust WJ (1985) Differences in lateral hemispheric asymmetries of glucose utilization between early- and late-onset Alzheimer-type dementia. Am J Psychiatry 142:638–640

    CAS  PubMed  Google Scholar 

  22. Koss E, Weiffenbach JM, Haxby JV, Friedland RP (1988) Olfactory detection and identification performance are dissociated in early Alzheimer’s disease. Neurology 38:1228–1232

    CAS  PubMed  Google Scholar 

  23. Landis BN, Welge-Luessen A, Brämerson A, Bende M, Mueller CA, Nordin S, Hummel T (2009) “Taste strips”––a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J Neurol 256:242–248

    Article  PubMed  Google Scholar 

  24. Lang CJ, Leuschner T, Ulrich K, Stössel C, Heckmann JG, Hummel T (2006) Taste in dementing diseases and parkinsonism. J Neurol Sci 248:177–184

    Article  CAS  PubMed  Google Scholar 

  25. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    CAS  PubMed  Google Scholar 

  26. Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s disease. Arch Neurol 55:84–90

    Article  CAS  PubMed  Google Scholar 

  27. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M, Caffarra P, Pupi A (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 47:1778–1786

    CAS  PubMed  Google Scholar 

  28. Mueller C, Kallert S, Renner B, Stiassny K, Temmel AF, Hummel T, Kobal G (2003) Quantitative assessment of gustatory function in a clinical context using impregnated “taste strips”. Rhinology 41:2–6

    CAS  PubMed  Google Scholar 

  29. Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54:343–351

    Article  PubMed  Google Scholar 

  30. Peters JM, Hummel T, Kratzsch T, Lotsch J, Skarke C, Frolich L (2003) Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am J Psychiatry 160:1995–2002

    Article  PubMed  Google Scholar 

  31. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  CAS  PubMed  Google Scholar 

  32. Petersen RC, Smith GE, Ivnik RJ, Tangales EG, Schaid DJ, Thibodeau SN, Kokmen E, Waring SC, Kurland LT (1995) Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. J Am Med Assoc 273:1274–1278

    Article  CAS  Google Scholar 

  33. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  PubMed  Google Scholar 

  34. Schiffman SS, Clark CM, Warwick ZS (1990) Gustatory and olfactory dysfunction in dementia: not specific to Alzheimer’s disease. Neurobiol Aging 11:597–600

    Article  CAS  PubMed  Google Scholar 

  35. Schiffman SS, Graham BG, Sattely-Miller EA, Zervakis J, Welsh-Bohmer K (2002) Taste, smell and neuropsychological performance of individuals at familial risk for Alzheimer’s disease. Neurobiol Aging 23:397–404

    Article  CAS  PubMed  Google Scholar 

  36. Serby M, Larson P, Kalkstein D (1991) The nature and course of olfactory deficits in Alzheimer’s disease. Am J Psychiatry 148:357–360

    CAS  PubMed  Google Scholar 

  37. Sewards TV (2004) Dual separate pathways for sensory and hedonic aspects of taste. Brain Res Bull 62:271–283

    Article  PubMed  Google Scholar 

  38. Small DM, Gregory MD, Mak YE, Gitelman DR, Mesulam MM, Parrish TB (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711

    Article  CAS  PubMed  Google Scholar 

  39. Trojanowski JQ, Clark CM, Arai H, Lee VMY (1996) Elevated levels of tau in cerebrospinal fluid: implications for the antemortem diagnosis of Alzheimer’s disease. Alzheimers Dis Rev 1:77–83

    CAS  Google Scholar 

  40. Waldton S (1974) Clinical observations of impaired cranial nerve function in senile dementia. Acta Psychiatr Scand 50:539–547

    Article  CAS  PubMed  Google Scholar 

  41. Wang QS, Tian L, Huang YL, Qin S, He LQ, Zhou JN (2002) Olfactory identification and apolipoprotein E epsilon 4 allele in mild cognitive impairment. Brain Res 951:77–81

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Steinbach.

Additional information

S. Steinbach and W. Hundt have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbach, S., Hundt, W., Vaitl, A. et al. Taste in mild cognitive impairment and Alzheimer’s disease. J Neurol 257, 238–246 (2010). https://doi.org/10.1007/s00415-009-5300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5300-6

Keywords

Navigation