Skip to main content

Advertisement

Log in

Development and malformations of the human pyramidal tract

  • REVIEW
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The corticospinal tract develops over a rather long period of time, during which malformations involving this main central motor pathway may occur. In rodents, the spinal outgrowth of the corticospinal tract occurs entirely postnatally, but in primates largely prenatally. In mice, an increasing number of genes have been found to play a role during the development of the pyramidal tract. In experimentally studied mammals, initially a much larger part of the cerebral cortex sends axons to the spinal cord, and the site of termination of corticospinal fibers in the spinal grey matter is much more extensive than in adult animals. Selective elimination of the transient corticospinal projections yields the mature projections functionally appropriate for the pyramidal tract. Direct corticomotoneuronal projections arise as the latest components of the corticospinal system. The subsequent myelination of the pyramidal tract is a slow process, taking place over a considerable period of time. Available data suggest that in man the pyramidal tract develops in a similar way. Several variations in the funicular trajectory of the human pyramidal tract have been described in otherwise normally developed cases, the most obvious being those with uncrossed pyramidal tracts.

A survey of the neuropathological and clinical literature, illustrated with autopsy cases, reveals that the pyramidal tract may be involved in a large number of developmental disorders. Most of these malformations form part of a broad spectrum, ranging from disorders of patterning, neurogenesis and neuronal migration of the cerebral cortex to hypoxic-ischemic injury of the white matter. In some cases, pyramidal tract malformations may be due to abnormal axon guidance mechanisms. The molecular nature of such disorders is only beginning to be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahdab-Barmada M, Claassen D (1990) A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J Neuropathol Exp Neurol 49:610–620

    Google Scholar 

  2. Aida N, Nishimura G, Hachiya Y, Matsui K, Takeuchi M, Itani Y (1998) MR imaging of perinatal brain damage: Comparison of clinical outcome with initial and follow-up MR findings. AJNR Am J Neuroradiol 19:1909–1921

    Google Scholar 

  3. Altman J, Bayer SA (2001) Development of the Human Spinal Cord. An interpretation based on experimental studies in animals. Oxford University Press, New York

  4. Anton G (1922) Ueber Ersatz der Bewegungsleistungen beim Menschen und Entwicklungsstörungen des Kleinhirns. Zbl Ges Neurol Psychiatr 30:372–374

    Google Scholar 

  5. Armand J (1982) The origin, course and termination of corticospinal fibers in various mammals. Prog Brain Res 57:329–360

    Google Scholar 

  6. Armand J, Edgley SA, Lemon RN, Olivier E (1994) Protracted postnatal development of corticospinal projections from the primary motor cortex to hand motoneurones in the macaque monkey. Exp Brain Res 101:178–182

    Google Scholar 

  7. Armand J, Olivier E, Edgley SA, Lemon RN (1997) Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci 17:251–266

    Google Scholar 

  8. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  9. Bagnard D, Lohrum M, Uziel D, Püschel AW, Bölz J (1998) Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125:5043–5053

    Google Scholar 

  10. Bagri A, Marín O, Plump AS, Mak Y, Pleasure SJ, Rubinstein JLR, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    Article  CAS  PubMed  Google Scholar 

  11. Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. Arch Neurol 7:386–410

    CAS  PubMed  Google Scholar 

  12. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development. Update 2001. Neurology 57:2168–2178

    CAS  PubMed  Google Scholar 

  13. Barth PG, Mullaart R, Stam FC, Slooff JL (1982) Familial lissencephaly with extreme neopallial hypoplasia. Brain Dev 4:145–151

    Google Scholar 

  14. Bergemann AD, Zhang L, Chiang MK, Brambilla R, Klein R, Flanagan JG (1998) Ephrin-B3, a ligand for the receptor EphB3, expressed in the midline of the developing neural tube. Oncogene 16:471–480

    Google Scholar 

  15. Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–262

    Google Scholar 

  16. Bouza H, Dubowitz LM, Rutherford M, Pennock JM (1994) Prediction of outcome in children with congenital hemiplegia: A magnetic resonance imaging study. Neuropediatrics 25:60–66

    Google Scholar 

  17. Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human autopsy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    Google Scholar 

  18. Bubis JJ, Landau WM (1964) Agenesis of the pyramidal tracts associated with schizencephalic clefts in rolandic cortex. Neurology 14:821–824

    Google Scholar 

  19. Caroni P, Schwab ME (1988a) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106:1281–1288

    Google Scholar 

  20. Caroni P, Schwab ME (1988b) Antibody against myelin-associated inhibitors of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96

    Google Scholar 

  21. Castellani V, Chédotal A, Schachner M, Faivre-Sarrailh C, Rougon G (2000) Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27:237–249

    Google Scholar 

  22. Chow CW, Halliday JL, Anderson RMcD, Danks DM, Fortune DW (1985) Congenital absence of pyramids and its significance in genetic diseases. Acta Neuropathol 65:313–317

    Google Scholar 

  23. Coad JE, Angel C, Pierpont MEM, Gorlin RJ, Anderson ML (1997) Microcephaly with agenesis of corticospinal tracts and arthrogryposis, hypospadias, single umbilical artery, hypertelorism, and renal and adrenal hypoplasia—previously undescribed syndrome. Am J Med Genet 71:458–462

    Google Scholar 

  24. Cohen MM Jr, Kreiborg S (1990) The central nervous system in the Apert syndrome. Am J Med Genet 35:36–45

    Google Scholar 

  25. Coonan JR, Greferath U, Messenger J, Hartley L, Murphy M, Boyd AW, Dottori M, Galea MP, Bartlett PF (2001) Development and reorganization of corticospinal projections in EphA4 deficient mice. J Comp Neurol 436:248–262

    Google Scholar 

  26. D’Agostino AN, Kernohan JW, Brown JR (1963) The Dandy-Walker syndrome. J Neuropathol Exp Neurol 22:450–470

    Google Scholar 

  27. Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nature Genet 17:346–349

    Google Scholar 

  28. Dambska M, Wisniewski K, Sher JH (1984) An autopsy case of hemimegalencephaly. Brain Dev 6:60–64

    Google Scholar 

  29. Darian-Smith I, Galea MP, Darian-Smith C, Sugitani M, Tan A, Burman K (1996) The anatomy of manual dexterity. Adv Anat Embryol Cell Biol 133:1–145

    Google Scholar 

  30. de Carlos JA, O’Leary DD (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12:1194–1211

    Google Scholar 

  31. de Vries LS, Groenendaal F, van Haastert IC, Eken P, Rademaker KJ, Meiners LC (1999) Asymmetrical myelination of the posterior limb of the internal capsule in infants with periventricular haemorrhagic infarction: an early predictor of hemiplegia. Neuropediatrics 30:314–319

    Google Scholar 

  32. Dobson CB, Villagra F, Clowry GJ, Smith M, Kenwrick S, Donnai D, Miller S, Eyre JA (2001) Abnormal corticospinal function but normal axonal guidance in human L1CAM mutations. Brain 124:2393–2406

    Google Scholar 

  33. Dottori M, Hartley L, Galea M, Paxinos G, Polizotto M, Kilpatrick T, Bartlett PF, Murphy M, Köntgen F, Boyd AW (1998) EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci USA 95:13248–13253

    Google Scholar 

  34. Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neuroscience 11:667–689

    Google Scholar 

  35. Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    CAS  PubMed  Google Scholar 

  36. Duqué J, Thonnard J-L, Vandermeeren Y, Sébire G, Cosnard G, Olivier E (2003) Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia. Brain 126:732–747

    Article  PubMed  Google Scholar 

  37. Eyre JA, Miller S, Ramesh V (1991) Constancy of central production delays during development in man: Investigation of motor and somatosensory pathways. J Physiol (Lond) 434:441–452

    Google Scholar 

  38. Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64

    Google Scholar 

  39. Eyre JA, Taylor JP, Villagra F, Smith M, Miller S (2001) Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 57:1543–1554

    Google Scholar 

  40. Finckh U, Schröder J, Ressler B, Veske A, Gal A (2000) Spectrum and detection rate of L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. Am J Med Genet 92:40–46

    Google Scholar 

  41. Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci 22:10346–10356

    Google Scholar 

  42. Fink GR, Frackowiak RSJ, Pietrzyk U, Passingham RF (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    Google Scholar 

  43. Flament D, Goldsmith P, Lemon RN (1992) The development of corticospinal projections to tail and hindlimb motoneurons studied in infant macaques using magnetic brain stimulation. Exp Brain Res 90:225–228

    Google Scholar 

  44. Flament D, Hall EJ, Lemon RN (1992) The development of corticomotoneuronal projections investigated using magnetic brain stimulation in the infant macaque. J Physiol (Lond) 447:755–768

    Google Scholar 

  45. Flechsig P (1876) Die Leitungsbahnen im Gehirn und Rückenmark des Menschen auf Grund entwickelungsgeschichtlicher Untersuchungen dargestellt. Engelmann, Leipzig

  46. Forssberg H, Eliasson AC, Kinoshita H, Johansson RS, Westling G (1991) Development of human precision grip. I. Basic coordination of force. Exp Brain Res 85:451–457

    CAS  PubMed  Google Scholar 

  47. Fransen E, van Camp G, Vits L, Willems PJ (1997) L1-associated diseases: Clinical geneticists divide,molecular geneticists unite. Hum Mol Genet 6:1625–1632

    Google Scholar 

  48. Friede RL (1989) Developmental Neuropathology. Second edition. Springer, Wien-New York

  49. Friede RL, Boltshauser E (1978) Uncommon syndromes of cerebellar vermis aplasia. I. Joubert syndrome. Dev Med Child Neurol 20:758–763

    CAS  PubMed  Google Scholar 

  50. Friede RL, Mikolasek J (1978) Postencephalitic porencephaly, hydranencephaly or polymicrogyria. A review. Acta Neuropathol 43:161–168

    Google Scholar 

  51. Fujimori KE, Takeuchi K, Yazaki T, Uyemura K, Nojyo Y, Tamamaki N (2000) Expression of L1 and TAG-1 in the corticospinal, callosal, and hippocampal commissural neurons in the developing rat telencephalon as revealed by retrograde and in situ hybridization double labeling. J Comp Neurol 417:275–288

    Google Scholar 

  52. Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type: Clinical, genetic and pathologic considerations. Brain Dev 3:1–29

    Google Scholar 

  53. Galea MP, Darian-Smith I (1995) Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb Cortex 5:518–540

    Google Scholar 

  54. Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 202:443–474

    Google Scholar 

  55. Gorgels TGMF, Oestreicher AB, de Kort EJM, Gispen WH (1987) Immunocyto-chemical distribution of the protein kinase C substrate B-50 (GAP43) in developing rat pyramidal tract. Neurosci Lett 83:59–64

    Google Scholar 

  56. Granata T, Farina L, Faiella A, Cardini R, d’Incerti L, Boncinelli E, Battaglia G (1997) Familial schizencephaly associated with EMX2 mutation. Neurology 48:1403–1406

    Google Scholar 

  57. Gribnau AAM, de Kort EJM, Dederen PJWC, Nieuwenhuys R (1986) On the development of the pyramidal tract in the rat. II. An anterograde tracer study of the outgrowth of the corticospinal fibers. Anat Embryol 175:101–110

    Google Scholar 

  58. Gropman AL, Barkovich AJ, Vezina LG, Conry JA, Dubovsky EC, Packer RJ (1997) Pediatric congenital bilateral perisylvian syndrome: Clinical and MRI features in 12 patients. Neuropediatrics 28:198–203

    Google Scholar 

  59. Halliday J, Chow CW, Wallace D, Danke DM (1986) X linked hydrocephalus: A survey of a 20 years period in Victoria, Australia. J Med Genet 23:23–31

    Google Scholar 

  60. Harding B, Copp AJ (1997) Malformations. In: Graham DI, Lantos PL (eds) Greenfield’s Neuropathology. Arnold, London, pp 397–533

  61. He S-Q, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: Motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    Google Scholar 

  62. He S-Q, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: Motor areas on the medial surface of the hemisphere. J Neurosci 14:3284–3306

    Google Scholar 

  63. Heffner CD, Lumsden AGS, O’Leary DDM (1990) Target control of collateral extension and directional axon growth in the mammalian brain. Science 247:217–220

    Google Scholar 

  64. Humphrey T (1960) The development of the pyramidal tracts in human fetuses, correlated with cortical differentiation. In: Tower DB, Schadé JP (eds) Structure and Function of the Cerebral Cortex. Elsevier, Amsterdam, pp 93–103

  65. Inoue K, Terashima T, Inoue Y (1991) The intracortical position of pyramidal tract neurons in the motor cortex of the reeler changes from postnatal day 10 to adulthood. Dev Brain Res 62:146–150

    Google Scholar 

  66. Janzer RC, Friede RL (1982) Dandy-Walker syndrome with atresia of the fourth ventricle and multiple rhombencephalic malformations. Acta Neuropathol (Berl) 58:81–86

    Google Scholar 

  67. Jones EG, Schreyer DJ, Wise SP (1982) Growth and maturation of the rat corticospinal tract. Prog Brain Res 57:361–379

    Google Scholar 

  68. Joosten EAJ, Gribnau AAM (1989) Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein. Neuroscience 31:439–452

    Google Scholar 

  69. Joosten EAJ, Gribnau AAM, Dederen PJWC (1987) An anterograde tracer study of the developing corticospinal tract in the rat: Three components. Dev Brain Res 36:121–130

    Google Scholar 

  70. Joosten EAJ, Gribnau AAM, Gorgels TGMF (1990) Immunoelectron microscopic localization of cell adhesion molecule L1 in developing rat pyramidal tract. Neuroscience 38:675–686

    Google Scholar 

  71. Joosten EAJ, van der Ven PFM, Hooiveld MHW, ten Donkelaar HJ (1991) Induction of corticospinal target finding by release of a diffusible, chemotropic factor in cervical spinal grey matter. Neurosci Lett 128:25–28

    Google Scholar 

  72. Kadhim H, Tabarki B, Verellen G, de Prez C, Rona A-M, Sébire G (2001) Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56:1278–1284

    Google Scholar 

  73. Karch SB, Urich H (1972) Occipital encephalocele: A morphological study. J Neurol Sci 15:89–112

    Google Scholar 

  74. Kertesz A, Geschwind N (1971) Patterns of pyramidal decussation and their relationship to handedness. Arch Neurol 24:326–332

    Google Scholar 

  75. Killackey HP, Dehay C, Giroud P, Berland M, Kennedy H (1997) Distribution of corticospinal projection neurons in the neocortex of the fetal macaque monkey. Soc Neurosci Abstr 23:902

    Google Scholar 

  76. Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    Google Scholar 

  77. Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RSJ, Bouloux PMG, Passingham RE (1999) Kallmann’s syndrome. Mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 52:816–822

    CAS  PubMed  Google Scholar 

  78. Kullander K, Croll SD, Zimmer M, Pan L, McClain J, Hughes V, Zabski S, DeChiara TM, Klein R, Yancopoulos GD,Gale NW (2001) Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15:877–888

    Google Scholar 

  79. Kuypers HGJM (1962) Corticospinal connections. Postnatal development in the rhesus monkey. Science 138:678–680

    Google Scholar 

  80. Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB, Brookhart JM, Mountcastle VB (eds) Handbook of Physiology—The Nervous System, Vol 2: Motor Systems. American Physiological Society, Bethesda, MD, pp 597–666

  81. Kuzniecky RF, Andermann F, Guerrini R (1993) CBPS Multicenter collaborative study: Congenital bilateral perisylvian syndrome: Study of 31 patients. Lancet 341:608–612

    Google Scholar 

  82. Lagger RL (1979) Failure of pyramidal tract decussation in the Dandy-Walker syndrome. J Neurosurg 50:382–387

    Google Scholar 

  83. Lawrence DG, Hopkins DA (1976) The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain 99:235–254

    Google Scholar 

  84. Lemire RJ, Loeser JD, Leech RW, Alvord EC Jr (1975) Normal and Abnormal Development of the Human Nervous System. Harper and Row, Hagerstown, MD

  85. Luhan JA (1959) Long survival after unilateral stab wound of medulla with unusual pyramidal tract distribution. Arch Neurol 1:427–434

    Google Scholar 

  86. Maksem JA, Roessmann U (1979) Apert’s syndome with central nervous system anomalies. Acta Neuropathol (Berl) 48:59–61

    Google Scholar 

  87. Marín O, Baker J, Puelles L, Rubinstein JLR (2002) Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129:761–773

    CAS  PubMed  Google Scholar 

  88. Marín-Padilla M (1990) Origin, formation and perinatal maturation of the human cerebral cortex: An overview. J Craniofac Genet Dev Biol 10:137–146

    Google Scholar 

  89. Marín-Padilla M (1996) Developmental neuropathology and impact of perinatal brain damage. I. Hemorrhagic lesions of neocortex. J Neuropathol Exp Neurol 55:758–773

    Google Scholar 

  90. Marín-Padilla M (1997) Developmental neuropathology and impact of perinatal brain damage. II. White matter lesions of the neocortex. J Neuropathol Exp Neurol 56:219–235

    Google Scholar 

  91. Marín-Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III. Gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58:407–429

    Google Scholar 

  92. Métin C, Deléglise D, Serafini T, Kennedy TE, Tessier-Lavigne M (1997) A role for netrin-1 in the guidance of cortical efferents. Development 124:5063–5074

    Google Scholar 

  93. Miller MW (1987) The origin of corticospinal projection neurons in rat. Exp Brain Res 67:339–351

    Google Scholar 

  94. Molnár Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18:389–397

    Google Scholar 

  95. Molnár Z, Cordery PM (1999) Connections between cells of the internal capsule, thalamus and cerebral cortex in embryonic rat. J Comp Neurol 413:1–25

    Google Scholar 

  96. Müller F, O’Rahilly R (1990a) The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol 182:375–400

    Google Scholar 

  97. Müller F, O’Rahilly R (1990b) The human rhombencephalon at the end of the embryonic period proper. Am J Anat 189:127–145

    Google Scholar 

  98. Müller K, Hömberg V, Lenard H-G (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    Google Scholar 

  99. Müller K, Kass-Illiyya F, Reitz M (1997) Ontogeny of ipsilateral corticospinal projections: A developmental study with transcranial magnetic stimulation. Ann Neurol 42:705–711

    PubMed  Google Scholar 

  100. Nathan PW, Smith MC (1955) Long descending tracts in man. I. Review of present knowledge. Brain 78:248–303

    Google Scholar 

  101. Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324

    PubMed  Google Scholar 

  102. Nelson KB, Dambrosia JM, Grether JK, Phillips TM (1998) Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 44:665–675

    Google Scholar 

  103. Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskin KJ (1995) Congenital Malformations of the Brain. Pathologic, embryologic, clinical, radiologic and genetic aspects. Oxford University Press, New York

  104. Nudo RJ, Masterton RB (1990) Descending pathways to the spinal cord. III. Sites of origin of the corticospinal tract. J Comp Neurol 296:559–583

    Google Scholar 

  105. Nyberg-Hansen R, Rinvik E (1963) Some comments on the pyramidal tracts, with special reference to its individual variations in man. Acta Neurol Scand 39:1–30

    Google Scholar 

  106. O’Leary DDM, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned projections of the mammalian cortex. Neuron 10:991–1006

    Google Scholar 

  107. Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276

    Google Scholar 

  108. Ostrovskaya TI, Lazjuk GI (1988) Cerebral abnormalities in the Neu-Laxova syndrome. Am J Med Genet 30:747–756

    Google Scholar 

  109. Pang D, Dias MS, Ahdab-Barmada M (1992) Split notochord malformation. Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 31:451–480

    CAS  PubMed  Google Scholar 

  110. Picard N, Strick PL (1996) Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex 6:342–353

    Google Scholar 

  111. Pinard J-M, Feydy A, Carlier R, Perez N, Pierot L, Burnod Y (2000) Functional MRI in double cortex: Functionality of heterotopia. Neurology 54:1531–1533

    Google Scholar 

  112. Polleux F, Giger RJ, Ginty DD, Kolodkin AL, Ghosh A (1998) Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282:1904–1906

    Google Scholar 

  113. Richards LJ, Koester SE, Tuttle R, O’Leary DD (1997) Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17:2445–2458

    Google Scholar 

  114. Robain O, Floquet C, Heldt N, Rozenberg F (1988) Hemimegalencephaly: A clinicopathological study of four cases. Neuropathol Appl Neurobiol 14:125–135

    Google Scholar 

  115. Roessmann U, Hori A (1985) Agyria (lissencephaly) with anomalous pyramidal crossing. Case report and review of literature. J Neurol Sci 69:357–364

    Google Scholar 

  116. Roland PE, Zilles K (1996) Functions and structures of the motor cortices in humans. Curr Opin Neurobiol 6:773–781

    Google Scholar 

  117. Rosenthal A, Jouet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genet 2:107–112

    Google Scholar 

  118. Santavuori P, Somer H, Saino K, Rapola J, Kruus S, Nikitin T, Ketonen L, Leisti J (1989) Muscle-eye-brain disease (MEB). Brain Dev 11:147–153

    Google Scholar 

  119. Sarnat HB (2000) Molecular genetic classification of central nervous system malformations. J Child Neurol 15:675–687

    Google Scholar 

  120. Schottler F, Couture D, Rao A, Kahn H, Lee KS (1998) Subcortical connections of normotopic and heterotopic neurons in sensory and motor cortices of the tish mutant rat. J Comp Neurol 395:29–42

    Google Scholar 

  121. Schreyer DJ, Jones EG (1982) Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats. Neuroscience 7:1837–1853

    Google Scholar 

  122. Schreyer DJ, Jones EG (1988) Axon elimination in the developing corticospinal tract of the rat. Dev Brain Res 38:103–119

    Google Scholar 

  123. Schwab ME, Schnell L (1991) Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J Neurosci 11:709–721

    Google Scholar 

  124. Squier M, Chamberlain P, Zaiwalla Z, Anslow P, Oxbury J, Gould S, McShane MA (2000) Five cases of brain injury following amniocentesis in mid-term pregnancy. Dev Med Child Neurol 42:554–560

    Google Scholar 

  125. Squier W (2002) Pathology of fetal and neonatal brain damage: identifying the timing. In: Squier W (ed) Acquired Damage to the Developing Brain: Timing and causation. Arnold, London, pp 110–127

  126. Stanfield BB (1992) The development of the corticospinal projection. Prog Neurobiol 38:169–202

    Google Scholar 

  127. Stanfield BB, O’Leary DDM (1985) The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238:236–248

    Google Scholar 

  128. Staudt M, Niemann G, Grodd W, Krägeloh-Mann I (2000) The pyramidal tract in congenital hemiparesis: Relationship between morphology and function in periventricular lesions. Neuropediatrics 31:257–264

    Google Scholar 

  129. Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krägeloh-Mann I (2002) Two types of ipsilateral reorganization in congenital hemiparesis. A TMS and fMRI study. Brain 125:2222–2237

    Article  PubMed  Google Scholar 

  130. Staudt M, Pavlova M, Böhm S, Grodd W, Krägeloh-Mann I (2003) Pyramidal tract damage correlates with motor dysfunction in bilateral periventricular leukomalacia (PVL). Neuropediatrics 34:182–188

    Google Scholar 

  131. ten Donkelaar HJ (2000) Development and regenerative capacity of descending supraspinal pathways in tetrapods: A comparative approach. Adv Anat Embryol Cell Biol 145:1–145

    Google Scholar 

  132. ten Donkelaar HJ, Wesseling P, Semmekrot BA, Liem KD, Tuerlings J, Cruysberg JRM, de Wit PEJ (1999) Severe, non X-linked congenital microcephaly with absence of the pyramidal tracts in two siblings. Acta Neuropathol (Berl) 98:203–211

    Google Scholar 

  133. ten Donkelaar HJ, Hoevenaars F, Wesseling P (2000) A case of Joubert’s syndrome with extensive cerebral malformations. Clin Neuropathol 19:85–93

    Google Scholar 

  134. ten Donkelaar HJ, Willemsen MAAP, van der Heijden I, Beems T, Wesseling P (2002) A spinal intradural enterogenous cyst with well-differentiated muscularis propria. Acta Neuropathol (Berl)104:538–542

    Google Scholar 

  135. Terashima T (1995) Course and collaterals of corticospinal fibers arising from the sensorimotor cortex in the reeler mouse. Dev Neurosci 17:8–19

    Google Scholar 

  136. van der Knaap MS, Valk J (1995) Magnetic Resonance of Myelin, Myelination and Myelin Disorders. Second edition. Springer, Berlin-Heidelberg-New York

  137. Verhaart WJC (1950) Hypertrophy of pes pedunculi and pyramid as result of degeneration of contralateral corticofugal fiber tracts. J Comp Neurol 92:1–15

    Google Scholar 

  138. Verhaart WJC, Kramer W (1952) The uncrossed pyramidal tract. Acta Psychiatr Neurol Scand 27:181–200

    Google Scholar 

  139. Vogel H, Halpert D, Horoupian DS (1990) Hypoplasia of posterior spinal roots and dorsal spinal tracts with arthrogryposis multiplex congenita. Acta Neuropathol (Berl)79:692–696

    Google Scholar 

  140. Volpe JJ (2001) Hypoxic-ischemic encephalopathy: Neuropathology and pathogenesis. In: Volpe JJ. Neurology of the Newborn. Fourth edition. Saunders, Philadelphia, pp 296–330

  141. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–563

    CAS  PubMed  Google Scholar 

  142. Volpe JJ, Adams RD (1972) Cerebro-hepato-renal syndrome of Zellweger: An inherited disorder of neuronal migration. Acta Neuropathol (Berl) 20:175–198

    Google Scholar 

  143. Weimann JM, Zhang YA, Levin ME, Devine WP, Brûlet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24:819–831

    Google Scholar 

  144. Williams RS, Swisher CN, Jennings M, Ambler M, Caviness VS Jr (1984) Cerebro-ocular dysgenesis (Walker-Warburg syndrome): Neuropathologic and etiologic analysis. Neurology 34:1531–1541

    Google Scholar 

  145. Wózniak W, O’Rahilly R (1982) An electron microscopic study of myelination of pyramidal fibres at the level of the pyramidal decussation in the human fetus. J Hirnforsch 23:331–342

    Google Scholar 

  146. Yachnis AT, Rorke LB (1999) Neuropathology of Joubert’s syndrome. J Child Neurol 14:655–659

    CAS  PubMed  Google Scholar 

  147. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional Development of the Brain in Early Life. Blackwell, Oxford, pp 3–70

  148. Yakovlev PI, Rakic P (1966) Patterns of decussation of bulbar pyramids and distribution of pyramidal tracts on two sides of the spinal cord. Trans Am Neurol Assoc 91:366–367

    Google Scholar 

  149. Yamamoto T, Sakakibara S, Mikoshiba K, Terashima T (2003) Ectopic corticospinal tract and corticothalamic tract neurons in the cerebral cortex of yotari and reeler mice. J Comp Neurol 461:61–75

    Google Scholar 

  150. Yokoyama N, Romero MI, Cowan CA, Galvan P, Heimbacher F, Charnay P, Parada LF, Henkemeyer M (2001) Forward signaling mediated by Ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29:85–97

    Google Scholar 

  151. Jen JC, Chan W-M, Bosley TM, Wan J, Carr JR, Rüb U, Shattuck D, Salamon G, Kudo LC, Ou J, Lin DDM, Salih MAM, Kansu T, al Dhalaan H, al Zayed Z, MacDonald DB, Stigsby B, Plaitakis A, Dretakis EK, Gottlob I, Pieh C, Traboulsi EI, Wang Q, Wang L, Andrews C,Yamada K, Demer JL, Karim S, Alger JR, Geschwind DH, Deller T, Sicotte NL, Nelson SF, Baloh RW, Engle EC (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304:1509–1513

    Google Scholar 

  152. Sabatier C, Plump AS, Ma L, Brose K, Tamada A, Murakami F, Lee EY-HP, Tessier-Lavigne M (2004) The divergent Robo family protein Rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117:157–169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. ten Donkelaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Donkelaar, H.J., Lammens, M., Wesseling, P. et al. Development and malformations of the human pyramidal tract. J Neurol 251, 1429–1442 (2004). https://doi.org/10.1007/s00415-004-0653-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-004-0653-3

Key words

Navigation