Skip to main content
Log in

The emerging role of the FKBP5 gene polymorphisms in vulnerability–stress model of schizophrenia: further evidence from a Serbian population

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Increased reactivity to stress is observed in patients with schizophrenia spectrum disorders and their healthy siblings in comparison with the general population. Additionally, higher levels of neuroticism, as a proposed psychological measure of stress sensitivity, increase the risk of schizophrenia. HPA axis dysregulation is one of the possible mechanisms related to the vulnerability–stress model of schizophrenia, and recent studies revealed a possible role of the functional genetic variants of FK506-binding protein 51 (FKBP5) gene which modulate activity of HPA axis. The purpose of the present study was to investigate impact of FKBP5 on schizophrenia in Serbian patients and to explore relationship between genetic variants and neuroticism by using the case–sibling–control design. In 158 subjects, we measured psychotic experiences, childhood trauma and neuroticism. Nine single-nucleotide polymorphisms (rs9295158, rs3800373, rs9740080, rs737054, rs6926133, rs9380529, rs9394314, rs2766533 and rs12200498) were genotyped. The genetic influence was modeled using logistic regression, and the relationship between genetic variants and neuroticism was assessed by linear mixed model. Our results revealed genetic main effect of FKBP5 risk alleles (A allele of rs9296158 and T allele of rs3800373) and AGTC “risk” haplotype combination (rs9296158, rs3800373, rs9470080 and rs737054, respectively) on schizophrenia, particularly when childhood trauma was set as a confounding factor. We confirmed strong relationship between neuroticism and psychotic experiences in patients and siblings and further showed relationship between higher levels of neuroticism and FKBP5 risk variants suggesting potential link between biological and psychosocial risk factors. Our data support previous findings that trauma exposure shapes FKBP5 impact on schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosenthal D (1963) The Genain quadruplets: a case study and theoretical analysis of heredity and environment in Schizophrenia. Basic Books, New York

    Google Scholar 

  2. Zubin J, Spring B (1977) Vulnerability—a new view of schizophrenia. J Abnorm Psychol 86:103–126

    Article  CAS  PubMed  Google Scholar 

  3. Nuechterlein KH, Dawson ME (1984) A heuristic vulnerability/stress model of schizophrenic episodes. Schizophr Bull 10:300–312

    Article  CAS  PubMed  Google Scholar 

  4. Walker EF, Diforio D (1997) Schizophrenia: a neural diathesis-stress model. Psychol Rev 104:667–685

    Article  CAS  PubMed  Google Scholar 

  5. Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu Rev Clin Psychol 4:189–216

    Article  PubMed  Google Scholar 

  6. Ryan MC, Sharifi N, Condren R, Thakore JH (2004) Evidence of basal pituitary-adrenal over activity in first episode, drug naïve patients with schizophrenia. Psychoneuroendocrinology 29:1065–1070

    Article  CAS  PubMed  Google Scholar 

  7. van Venrooij JA, Fluitman SB, Lijmer JG, Kavelaars A, Heijnen CJ, Westenberg HG, Kahn RS, Gispen-de Wied CC (2012) Impaired neuroendocrine and immune response to acute stress in medication-naive patients with a first episode of psychosis. Schizophr Bull 38:272–279

    Article  PubMed  Google Scholar 

  8. Day FL, Valmaggia LR, Mondelli V, Papadopoulos A, Papadopoulos I, Pariante CM, McGuire P (2014) Blunted cortisol awakening response in people at ultra high risk of developing psychosis. Schizophr Res 158:25–31. doi:10.1016/j.schres.2014.06.041

    Article  PubMed  Google Scholar 

  9. Labad J, Stojanovic-Pérez A, Montalvo I, Solé M, Cabezas Á, Ortega L, Moreno I, Vilella E, Martorell L, Reynolds RM, Gutiérrez-Zotes A (2015) Stress biomarkers as predictors of transition to psychosis in at-risk mental states: roles for cortisol, prolactin and albumin. J Psychiatr Res 60:163–169

    Article  PubMed  Google Scholar 

  10. Aas M, Dazzan P, Mondelli V, Toulopoulou T, Reichenberg A, Di Forti M, Fisher HL, Handley R, Hepgul N, Marques T, Miorelli A, Taylor H, Russo M, Wiffen B, Papadopoulos A, Aitchison KJ, Morgan C, Murray RM, Pariante CM (2011) Abnormal cortisol awakening response predicts worse cognitive function in patients with first-episode psychosis. Psychol Med 41:463–476

    Article  CAS  PubMed  Google Scholar 

  11. Walder DJ, Walker EF, Lewine RJ (2000) Cognitive functioning, cortisol release, and symptom severity in patients with schizophrenia. Biol Psychiatry 48:1121–1132

    Article  CAS  PubMed  Google Scholar 

  12. Webster MJ, Knable M, O’Grady J, Orthmann J, Weickert CS (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7:985–994

    Article  CAS  PubMed  Google Scholar 

  13. van Winkel R, Stefanis NC, Myin-Germeys I (2008) Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr Bull 34:1095–1105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34:S186–S195

    Article  CAS  PubMed  Google Scholar 

  15. Scammell JG, Denny WB, Valentine DL, Smith DF (2001) Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 124:152–165

    Article  CAS  PubMed  Google Scholar 

  16. Binder EB, Salyakina D, Lichtner P et al (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325

    Article  CAS  PubMed  Google Scholar 

  17. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y, Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. J Am Med Assoc 299:1291–1305. doi:10.1001/jama.299.11.1291

    Article  CAS  Google Scholar 

  18. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, Bradley B, Nemeroff CB, Holsboer F, Heim CM, Ressler KJ, Rein T, Binder EB (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16:33–41. doi:10.1038/nn.3275

    Article  CAS  PubMed  Google Scholar 

  19. Zimmermann P, Brückl T, Nocon A, Pfister H, Binder EB, Uhr M, Lieb R, Moffitt TE, Caspi A, Holsboer F, Ising M (2011) Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. Am J Psychiatry 168:1107–1116. doi:10.1176/appi.ajp.2011.10111577

    Article  PubMed  Google Scholar 

  20. Willour VL, Chen H, Toolan J, Belmonte P, Cutler DJ, Goes FS, Zandi PP, Lee RS, MacKinnon DF, Mondimore FM, Schweizer B, Bipolar Disorder Phenome Group, NIMH Genetics Initiative Bipolar Disorder Consortium, DePaulo JR Jr, Gershon ES, McMahon FJ, Potash JB (2009) Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry 14:261–268. doi:10.1038/sj.mp.4002141

    Article  CAS  PubMed  Google Scholar 

  21. Martín-Blanco A, Ferrer M, Soler J, Arranz MJ, Vega D, Calvo N, Elices M, Sanchez-Mora C, García-Martinez I, Salazar J, Carmona C, Bauzà J, Prat M, Pérez V, Pascual JC (2015) The role of hypothalamus-pituitary-adrenal genes and childhood trauma in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 266:307–316. doi:10.1007/s00406-015-0612-2

    Article  PubMed  Google Scholar 

  22. Supriyanto I, Sasada T, Fukutake M, Asano M, Ueno Y, Nagasaki Y, Shirakawa O, Hishimoto A (2011) Association of FKBP5 gene haplotypes with completed suicide in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 35:252–256. doi:10.1016/j.pnpbp.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  23. Bevilacqua L, Carli V, Sarchiapone M, George DK, Goldman D, Roy A, Enoch MA (2012) Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Arch Gen Psychiatry 69:62–70. doi:10.1001/archgenpsychiatry.2011.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collip D, Myin-Germeys I, Wichers M, Jacobs N, Derom C, Thiery E, Lataster T, Simons C, Delespaul P, Marcelis M, van Os J, van Winkel R (2013) FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma. Br J Psychiatry 202:261–268. doi:10.1192/bjp.bp.112.115972

    Article  PubMed  Google Scholar 

  25. Ajnakina O, Borges S, Di Forti M, Patel Y, Xu X, Green P, Stilo SA, Kolliakou A, Sood P, Marques TR, David AS, Prata D, Dazzan P, Powell J, Pariante C, Mondelli V, Morgan C, Murray RM, Fisher HL, Iyegbe C (2014) Role of environmental confounding in the association between FKBP5 and first-episode psychosis. Front Psychiatry 5:84. doi:10.3389/fpsyt.2014.00084

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alemany S, Moya J, Ibáñez MI, Villa H, Mezquita L, Ortet G, Gastó C, Fañanás L, Arias B (2016) Research letter: childhood trauma and the rs1360780 SNP of FKBP5 gene in psychosis: a replication in two general population samples. Psychol Med 46:221–223. doi:10.1017/S0033291715001695

    Article  CAS  PubMed  Google Scholar 

  27. Green MJ, Raudino A, Cairns MJ, Wu J, Tooney PA, Scott RJ, Carr VJ, Australian Schizophrenia Research Bank (2015) Do common genotypes of FK506 binding protein 5 (FKBP5) moderate the effects of childhood maltreatment on cognition in schizophrenia and healthy controls? J Psychiatr Res 70:9–17. doi:10.1016/j.jpsychires.2015.07.019

    Article  PubMed  Google Scholar 

  28. Mitjans M, Catalán R, Vázquez M, González-Rodríguez A, Penadés R, Pons A, Massana G, Munro J, Arranz MJ, Arias B (2015) Hypothalamic-pituitary-adrenal system, neurotrophic factors and clozapine response: association with FKBP5 and NTRK2 genes. Pharmacogenet Genom 25:274–277

    Article  CAS  Google Scholar 

  29. Sinclair D, Fillman SG, Webster MJ, Weickert CS (2013) Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci Rep 3:3539. doi:10.1038/srep03539

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schmidt U, Buell DR, Ionescu IA, Gassen NC, Holsboer F, Cox MB, Novak B, Huber C, Hartmann J, Schmidt MV, Touma C, Rein T, Herrmann L (2015) A role for synapsin in FKBP51 modulation of stress responsiveness: convergent evidence from animal and human studies. Psychoneuroendocrinology 52:43–58

    Article  CAS  PubMed  Google Scholar 

  31. Daskalakis NP, Binder EB (2015) Schizophrenia in the spectrum of gene-stress interactions: the FKBP5 example. Schizophr Bull 41:323–329. doi:10.1093/schbul/sbu189

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Os J, Jones PB (2001) Neuroticism as a risk factor for schizophrenia. Psychol Med 31:1129–1134

    PubMed  Google Scholar 

  33. Goodwin RD, Fergusson DM, Horwood LJ (2003) Neuroticism in adolescence and psychotic symptoms in adulthood. Psychol Med 33:1089–1097

    Article  CAS  PubMed  Google Scholar 

  34. Dinzeo TJ, Docherty NM (2007) Normal personality characteristics in schizophrenia: a review of the literature involving the FFM. Nerv Ment Dis 195:421–429

    Google Scholar 

  35. Lysaker PH, Bryson GJ, Marks K, Greig TC, Bell MD (2004) Coping style in schizophrenia: associations with neurocognitive deficits and personality. Schizophr Bull 30(1):113–121

    Article  PubMed  Google Scholar 

  36. Boyette LL, van Dam D, Meijer C, Velthorst E, Cahn W, de Haan L, GROUP, Kahn R, de Haan L, van Os J, Wiersma D, Bruggeman R, Cahn W, Meijer C, Myin-Germeys I (2014) Personality compensates for impaired quality of life and social functioning in patients with psychotic disorders who experienced traumatic events. Schizophr Bull 40:1356–1365. doi:10.1093/schbul/sbu057

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boyette LL, Korver-Nieberg N, Verweij K, Meijer C, Dingemans P, Cahn W, de Haan L, GROUP (2013) Associations between the five-factor model personality traits and psychotic experiences in patients with psychotic disorders, their siblings and controls. Psychiatry Res 210:491–497. doi:10.1016/j.psychres.2013.06.040

    Article  PubMed  Google Scholar 

  38. Myin-Germeys I, van Os J (2007) Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clin Psychol Rev 27:409–424

    Article  PubMed  Google Scholar 

  39. Aiello G, Horowitz M, Hepgul N, Pariante CM, Mondelli V (2012) Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with “at risk” mental state. Psychoneuroendocrinology 37:1600–1613. doi:10.1016/j.psyneuen.2012.05.003

    Article  PubMed  Google Scholar 

  40. Myin-Germeys I, van Os J, Schwartz JE, Stone AA, Delespaul PA (2001) Emotional reactivity to daily life stress in psychosis. Arch Gen Psychiatry 58:1137–1144

    Article  CAS  PubMed  Google Scholar 

  41. Ormel J, Bastiaansen A, Riese H, Bos EH, Servaas M, Ellenbogen M, Rosmalen JG, Aleman A (2013) The biological and psychological basis of neuroticism: current status and future directions. Neurosci Biobehav Rev 37:59–72. doi:10.1016/j.neubiorev.2012.09.004

    Article  PubMed  Google Scholar 

  42. Jovicic M, Maric NP, Soldatovic I, Lukic I, Andric S, Mihaljevic M, Pavlovic Z, Mitic M, Adzic M (2015) The role of glucocorticoid receptor phosphorylation in the model of negative affective states. World J Biol Psychiatry 16:301–311. doi:10.3109/15622975.2014.1000375

    Article  PubMed  Google Scholar 

  43. European Network of National Networks studying Gene-Environment Interactions in Schizophrenia (EU-GEI) (2014) Identifying gene-environment interactions in Schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull 40:729–736. doi:10.1093/schbul/sbu069

    Article  Google Scholar 

  44. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th text revision. American Psychiatric Association, Washington

    Google Scholar 

  45. Sheehan DV, Lecrubier Y, Sheehan KH et al (1998) The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33

    PubMed  Google Scholar 

  46. Hall RC (1995) Global assessment of functioning. A modified scale. Psychosomatics 36:267–275

    Article  CAS  PubMed  Google Scholar 

  47. NIMH Genetics Initiative (1992) Family interview for genetic studies (FIGS). National Institute of Mental Health, Rockville

    Google Scholar 

  48. Stefanis NC, Hanssen M, Smirnis NK, Avramopoulos DA, Evdokimidis IK, Stefanis CN, Verdoux H, Van Os J (2002) Evidence that three dimensions of psychosis have a distribution in the general population. Psychol Med 32:347–358

    Article  CAS  PubMed  Google Scholar 

  49. Konings M, Bak M, Hanssen M, van Os J, Krabbendam L (2006) Validity and reliability of the CAPE: a self-report instrument for the measurement of psychotic experiences in the general population. Acta Psychiatr Scand 114:55–61

    Article  CAS  PubMed  Google Scholar 

  50. Lataster T, Verweij K, Viechtbauer W et al (2014) Effect of illness expression and liability on familial associations of clinical and subclinical psychosis phenotypes. Acta Psychiatr Scand 129:44–53. doi:10.1111/acps.12102

    Article  CAS  PubMed  Google Scholar 

  51. Eysenck HJ, Eysenck SBJ (1975) Manual of the Eysenck personality questionnaire. Hodder and Stoughton, London

    Google Scholar 

  52. Boyette LL, Nederlof J, Meijer C, de Boer F, de Haan L, GROUP (2015) Three year stability of five-factor model personality traits in relation to changes in symptom levels in patients with schizophrenia or related disorders. Psychiatry Res 229:539–544. doi:10.1016/j.psychres.2015.05.057

    Article  PubMed  Google Scholar 

  53. Bernstein D, Finkelhor L (1998) Childhood trauma questionnaire: a retrospective self-report. The Psychological Corporation, San Antonio

    Google Scholar 

  54. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res 16:12–15

    Google Scholar 

  55. Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149

    Article  CAS  PubMed  Google Scholar 

  56. Barett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  Google Scholar 

  57. Dackis MN, Rogosch FA, Oshri A, Cicchetti D (2012) The role of limbic system irritability in linking history of childhood maltreatment and psychiatric outcomes in low-income, high-risk women: moderation by FK506 binding protein 5 haplotype. Dev Psychopathol 24:1237–1252. doi:10.1017/S0954579412000673

    Article  PubMed  PubMed Central  Google Scholar 

  58. White MG, Bogdan R, Fisher PM, Muñoz KE, Williamson DE, Hariri AR (2012) FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav 11:869–878. doi:10.1111/j.1601-183X.2012.00837

    Article  CAS  PubMed  Google Scholar 

  59. Lataster T, Collip D, Lardinois M, van Os J, Myin-Germeys I (2010) Evidence for a familial correlation between increased reactivity to stress and positive psychotic symptoms. Acta Psychiatr Scand 122:395–404. doi:10.1111/j.1600-0447.2010.01566

    Article  CAS  PubMed  Google Scholar 

  60. Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER (2013) The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 38:1858–1873. doi:10.1016/j.psyneuen.2013.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shannon Weickert C, Webster MJ, Boerrigter D, Sinclair D (2015) FKBP5 messenger RNA increases after adolescence in human dorsolateral prefrontal cortex. Bio Psychiatry. doi:10.1016/j.biopsych.2015.11.005

    Google Scholar 

  62. Bortoluzzi A, Blaya C, da Rosa ED, Paim M, Rosa V, Leistner-Segal S, Manfro GG (2015) What can HPA axis-linked genes tell us about anxiety disorders in adolescents? Trends Psychiatry Psychother 37:232–237. doi:10.1590/2237-6089-2015-0035

    Article  PubMed  Google Scholar 

  63. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Grant NoHEALTH-F2-2010-241909 (The European Network of National Schizophrenia Networks Studying Gene-Environment Interactions -EU-GEI) and Grant No. III 41029, Ministry of Education and Sciences of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Mihaljevic.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihaljevic, M., Zeljic, K., Soldatovic, I. et al. The emerging role of the FKBP5 gene polymorphisms in vulnerability–stress model of schizophrenia: further evidence from a Serbian population. Eur Arch Psychiatry Clin Neurosci 267, 527–539 (2017). https://doi.org/10.1007/s00406-016-0720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0720-7

Keywords

Navigation