Skip to main content

Advertisement

Log in

Intramedullary screw fixation in proximal fifth-metatarsal fractures in sports: clinical and biomechanical analysis

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction and purpose

Intramedullary screw fixation (ISF) of proximal fifth-metatarsal fractures is known as first treatment option in young, sports active patients. No study analyzed functional and biomechanical outcome before. Hypothetically ISF leads to (1) a high bony union rate within 12 weeks, (2) normal hindfoot eversion strength, and (3) normal gait and plantar pressure distribution.

Methods

Fourteen out of 22 patients were available for follow-up with an average follow-up of 42 months; clinical and radiological follow-up, and biomechanical evaluation by isometric muscular strength measurement (inversion, eversion strength) and dynamic pedobarography, comparing to the non-affected contralateral foot. Level of significance: 0.05.

Results

Subjective result: Excellent or good result in 14 patients, none fair or poor. AOFAS midfoot score: 100 points in 13 patients and 87 points in 1 patient. The same sports activity level (0–4) was reached in 13 out of 14 patients. Radiologic examination: consolidation after 6 weeks in 9 patients and after 12 weeks in another 4 patients, one partial union. Average maximal eversion strength 59 N (ratio to the contralateral foot: 0.92, not significant). Dynamic pedobarography showed ratios of 0.99–1.01 to the contralateral side for ground reaction force, ground peak time, peak pressure and contact area (not significant).

Interpretation

A very-high patient-satisfaction, a fast bony healing and complete return to sports were documented. Muscular strength measurement and dynamic pedobarography showed complete functional rehabilitation. Therefore, ISF in proximal fifth-metatarsal fractures can be recommended as a secure procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Low K, Noblin JD, Browne JE, Barnthouse CD, Scott AR (2004) Jones fractures in the elite football player. J Surg Orthop Adv 13(3):156–160

    PubMed  Google Scholar 

  2. Fernandez Fairen M, Guillen J, Busto JM, Roura J (1999) Fractures of the fifth metatarsal in basketball players. Knee Surg Sports Trauma Arthrosc 7:373–377

    Article  CAS  Google Scholar 

  3. Jones R (1902) Fracture of the base of the fifth metatarsal by indirect violence. Ann Surg 35:697–702

    PubMed  CAS  Google Scholar 

  4. Horst F, Gilbert BJ, Glisson RR, Nunley JA (2004) Torque resistance after fixation of jones fractures with intramedullary screws. Foot Ankle Int 25(12):914–919

    PubMed  Google Scholar 

  5. Valderrabano V, Pagenstert G, Horisberger M, Knupp M, Hintermann B (2006) Sports and recreation activity of ankle arthritis patients before and after total ankle replacement. Am J Sports Med 34(6):993–999

    Article  PubMed  Google Scholar 

  6. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15(7):349–353

    PubMed  CAS  Google Scholar 

  7. Valderrabano V, Hintermann B, Wischer T, Fuhr P, Dick W (2004) Recovery of the posterior tibial muscle after late reconstruction following tendon rupture. Foot Ankle Int 25:85–95

    PubMed  Google Scholar 

  8. Porter DA, Duncan M, Meyer SJF (2005) Fifth metatarsal jones fracture fixation with a 4.5-mm cannulated stainless stell screw in the competitive and recreational athlete. Am J Sports Med 33(5):726–733

    Article  PubMed  Google Scholar 

  9. Portland G, Kelikian A, Kodros S (2003) Acute surgical management of Jones’ fracture. Foot Ankle Int 24(11):829–833

    PubMed  Google Scholar 

  10. Reese K, Litsky A, Kaeding CC, Pedroza A, Shah N (2004) Cannulated screw fixation of Jones fractures. Am J Sports Med 32(7):1736–1742

    Article  PubMed  Google Scholar 

  11. Larson CM, Almekinders LC, Taft TN, Garrett WE (2002) Intramedullary screw fixation of Jones fractures: analysis of failure. Am J Sports Med 30(1):55–60

    PubMed  Google Scholar 

  12. Clapper MF, O’Brien TJ, Lyons PM (1995) Fractures of the fifth metatarsal: analysis of a fracture registry. CORR 315:238–241

    Google Scholar 

  13. Lawrence SJ, Botte MJ (1993) Jones fractures and related fractures of the fifth metatarsal. Foot Ankle Int 14:358–364

    CAS  Google Scholar 

  14. TB Dameron Jr (1995) Fractures of the proximal fifth metatarsal: selecting the best treatment option. J Am Acad Orthop Surg 3(2):110–114

    Google Scholar 

  15. Smith JW, Arnoczky SP, Hersh A (1992) The intraosseus blood supply of the fifth metatarsal: implications for proximal fracture healing. Foot Ankle Int 13(3):143–152

    CAS  Google Scholar 

  16. Bong MR, Kummer FJ, Egol KA (2007) Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg 15(2):97–106

    PubMed  Google Scholar 

  17. Josefsson PO, Karlsson M, Redlund-Johnell I, Wendeberg B (1994) Jones fracture. Surgical versus nonsurgical treatment. CORR 299:252–255

    Google Scholar 

  18. Lawrence SJ (2004) Technique tip: local bone grafting technique for Jones fracture management with intramedullary screw fixation. Foot Ankle Int 25(12):920–921

    PubMed  Google Scholar 

  19. Husain ZS, DeFronzo DJ (2000) Relative stability of tension band versus two-cortes screw fixation for treating fifth metatarsal base avulsion fractures. J Foot Ankle Surg 39(2):89–95

    Article  PubMed  CAS  Google Scholar 

  20. Sarimo J, Rantanen J, Orava S, Alanen J (2006) Tension-band wiring for fractures of the fifth metatarsal located in the junction of the proximal metaphysis and diaphysis. Am J Sports Med 34(3):476–480

    Article  PubMed  Google Scholar 

  21. Arangio GA, Xiao D, Salathe EP (1997) Biomechanical study of stress in the fifth metatarsal. Clin Biomech 12(3):160–164

    Article  Google Scholar 

  22. Donahue SW, Sharkey NA (1999) Stance phase of gait: implications for stress fractures. JBJS Am 81(9):1236–1244

    CAS  Google Scholar 

  23. Giordano AR, Ferkel RD (2004) Strength analysis of intraosseous wire fixation for avulsion fractures of the fifth metatarsal base. J Foot Ankle Surg 43(4):225–230

    Article  PubMed  Google Scholar 

  24. Moshirfar A, Campbell JT, Molloy S, Jasper LE, Belkoff SM (2003) Fifth metatarsal tuberosity fracture fixation: a biomechanical study. Foot Ankle Int 24(8):630–633

    PubMed  Google Scholar 

  25. Vertullo CJ, Glisson RR, Nunley JA (2004) Torsional strains in the proximal fifth metatarsal: implications for Jones and stress fracture management. Foot Ankle Int 25(9):651–656

    Google Scholar 

  26. Valderrabano V, von Tscharner V, Nigg B, Hintermann B, Goepfert B, Fung TS, Frank CB, Herzog W (2006) Lower leg muscle atrophy in ankle osteoarthritis. J Orthop Res 24(12):2159–2169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Valderrabano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leumann, A., Pagenstert, G., Fuhr, P. et al. Intramedullary screw fixation in proximal fifth-metatarsal fractures in sports: clinical and biomechanical analysis. Arch Orthop Trauma Surg 128, 1425–1430 (2008). https://doi.org/10.1007/s00402-008-0709-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0709-4

Keywords

Navigation