Skip to main content
Log in

Structure of the human tibialis posterior tendon

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

The most common site of rupture of the posterior tibial tendon is the retromalleolar region where the tendon changes its direction of pull. The aim of this study was to characterize the tissue of the gliding zone of the tibialis posterior tendon to gain further knowledge about possible structural causes for spontaneous tendon rupture.

Methods

Light microscopy, transmission electron microscopy and immunohistochemical methods were used to describe the structure of the human tibialis posterior tendon.

Results

In the region where the tendon wraps around the medial malleolus, the structure of the tissue changes from the typical structure of a traction tendon. The superficial zone which was directed towards the pulley tissue had the structure of fibrocartilage with a specific three-dimensional collagen fibril texture. Transmission electron microscopy showed chondrocytes with a felt-like pericellular matrix that increased in size towards the gliding surface. The extracellular matrix of the fibrocartilage was rich in acid glycosaminoglycans and stained intensively with alcian blue at pH 1. Immunohistochemical staining of cartilage-specific extracellular matrix components such as type II collagen, chondroitin-4-sulphate, chondroitin-6-sulphate, keratan sulphate and aggrecan was positive.

Conclusion

The location of the fibrocartilage corresponds to the region where the tibialis posterior tendon wraps around the medial malleolus, which serves as a pulley. According to the theory of 'causal histogenesis', the stimulus for the development of fibrocartilage within dense connective tissue is intermittent compressive and shear stress. The fibrocartilaginous region is the region where most spontaneous ruptures of the tibialis posterior tendon occur. Due to its structure, the fibrocartilaginous region may be more vulnerable to repetitive tensile microtrauma; degeneration may occur due to the poor repair response of the avascular fibrocartilaginous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2. a
Fig. 3.
Fig. 4a,b.
Fig. 5. a

Similar content being viewed by others

References

  1. Altmann K (1964) Zur kausalen Histiogenese des Knorpels. W. Roux`s Theorie und experimentelle Wirklichkeit. Z Anat Entwicklungsgesch 37:1–167

    CAS  Google Scholar 

  2. Benjamin M, Evans EJ (1990) Fibrocartilage. J Anat 171:1–15

    CAS  PubMed  Google Scholar 

  3. Benjamin M, Quin S, Ralphs JR (1995) Fibrocartilage associated with human tendons and their pulleys. J Anat 187:625–633

    PubMed  Google Scholar 

  4. Caterson B, Calabo T, Donohue PJ, Jahnke MR (1986) Monoclonal antibodies against cartilage proteoglycan and link protein. In: Kuettner K (ed) Articular cartilage biochemistry. Raven Press, New York, pp 59–73

  5. Frey C, Shereff M, Greenidgen N (1990) Vascularity of the posterior tibial tendon. J Bone Joint Surg Am 72:884–888

    CAS  PubMed  Google Scholar 

  6. Gillard GC, Rilley HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit extensor flexor digitorum longus tendon. Connect Tissue Res 7:37–42

    Google Scholar 

  7. Giore NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11:581–591

    CAS  PubMed  Google Scholar 

  8. Hintermann B (1995) Die Dysfunktion des M. tibialis posterior infolge Sehneninsuffizienz. Orthopaede 24:193–199

    CAS  Google Scholar 

  9. Janis LR, Wagner JT, Kravitz RD, Greenberg JJ (1993) Posterior tibial tendon rupture: classification, modified surgical repair, and retrospective study. J Foot Ankle Surg 32:2–13

    CAS  PubMed  Google Scholar 

  10. Johnson KA, Strom DE (1989) Tibialis posterior dysfunction. Clin Orthop 239:196–206

    Google Scholar 

  11. Josza L, Kannus P (1998) Human tendons. Human Kinetics, London

  12. Kannus P, Josza L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study in 891 patients. J Bone Joint Surg Am 73:1507–1525

    CAS  PubMed  Google Scholar 

  13. Koch S, Tillmann B (1995) The distal tendon of biceps brachii. Ann Anat 177:467–474

    CAS  Google Scholar 

  14. Leadbetter WB (1992) Cell-matrix response in tendon injury. Clin Sports Med 11:533–542

    CAS  PubMed  Google Scholar 

  15. Mann RA, Thompson FM (1985) Rupture of the posterior tibial tendon causing flat foot. J Bone Joint Surg Am 67:556–561

    CAS  PubMed  Google Scholar 

  16. Milz S, Mc Neilly C, Putz R, Ralphs JR, Benjamin M (1998) Fibrocartilage in the extensor tendons of the interphalangeal joints of human toes. Anat Rec 252:264–270

    Article  CAS  PubMed  Google Scholar 

  17. Moiser SM, Pomeroy G, Manoli A (1999) Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop 365:12–22

    PubMed  Google Scholar 

  18. Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Zehnter Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z Anat Entwicklunggesch 121:478–515

    CAS  Google Scholar 

  19. Petersen W, Hohmann G, Stein V, Tillmann B (2001) Blood supply of the posterior tibial tendon—a quantitative study in human cadavers. J Bone Joint Surg Br 84:141–144

    Article  Google Scholar 

  20. Ploetz E (1938) Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop 67:212–234

    Google Scholar 

  21. Refior HJ, Kroedel A, Melzer C (1987) Examinations of the pathology of the rotator cuff. Arch Orthop Trauma Surg 106:301–306

    CAS  PubMed  Google Scholar 

  22. Uthoff HK, Sarkar K (1991) Pathology of rotator cuff tendons. In: Watson (ed) Surgery disorders of the shoulder. Churchill Livingstone, New York

  23. Vogel KG, Ördög A, Pogány G, Oláh J (1993) Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res 11:68–77

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Mrs. R Worm, Mrs. K. Stengel, Mrs. S. Seiters, Mrs. H. Siebke and Mrs. H. Waluk, members of the Department of Anatomy of the Christian Albrechts University Kiel, for their expert technical assistance. The work was supported by a grant from the 'Forschungsschwerpunkt Muskel und Skelettsystem' of CAU Kiel. The monoclonal aggrecan antibody developed by B. Caterson was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, W., Hohmann, G., Pufe, T. et al. Structure of the human tibialis posterior tendon. Arch Orthop Trauma Surg 124, 237–242 (2004). https://doi.org/10.1007/s00402-003-0500-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-003-0500-5

Keywords

Navigation