Skip to main content

Advertisement

Log in

Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

There is growing evidence that early nutrition affects later cognitive performance. The idea that the diet of mothers, infants, and children could affect later mental performance has major implications for public health practice and policy development and for our understanding of human biology as well as for food product development, economic progress, and future wealth creation. To date, however, much of the evidence is from animal, retrospective studies and short-term nutritional intervention studies in humans. The positive effect of micronutrients on health, especially of pregnant women eating well to maximise their child’s cognitive and behavioural outcomes, is commonly acknowledged. The current evidence of an association between gestational nutrition and brain development in healthy children is more credible for folate, n-3 fatty acids, and iron. Recent findings highlight the fact that single-nutrient supplementation is less adequate than supplementation with more complex formulae. However, the optimal content of micronutrient supplementation and whether there is a long-term impact on child’s neurodevelopment needs to be investigated further. Moreover, it is also evident that future studies should take into account genetic heterogeneity when evaluating nutritional effects and also nutritional recommendations. The objective of the present review is to provide a background and update on the current knowledge linking nutrition to cognition and behaviour in children, and to show how the large collaborative European Project NUTRIMENTHE is working towards this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ADHD:

Attention-deficit hyperactivity disorder

ALA:

Alpha-linolenic acid

aMRI:

Anatomical magnetic resonance imaging

COMT:

Catechol-O-methyltransferase

DHA:

Docosahexaenoic acid

DNA:

Deoxyribonucleic acid

EEG:

Electroencephalogram

ELOVL:

Fatty acid elongase 5

ERG:

Electroretinogram

ERPs:

Event-related potentials

FADS:

Fatty acid desaturase

FFQ:

Food frequency questionnaire

fMRI:

Functional magnetic resonance imaging

GWA:

Genome-wide association studies

HOTV:

Single letters that are presented to the child using the Electronic Visual Acuity System

IQ:

Intelligence quotient

LA:

Linoleic acid

LC-PUFA:

Long-chain polyunsaturated fatty acid

MRI:

Magnetic resonance imaging

mRNA:

Messenger ribonucleic acid

MTHFR:

Methylenetetrahydrofolate reductase

NUTRIMENTHE:

The Effect of Diet on the Mental Performance of Children

PET:

Positron emission tomography

PUFA:

Polyunsaturated fatty acid

RNA:

Ribonucleic acid

T3:

Triiodothyronine

T4:

Thyroxine

References

  1. Ramakrishnan U, Imhoff-Kunsch B, DiGirolamo AM (2009) Role of docosahexaenoic acid in maternal and child mental health. Am J Clin Nutr 89:958S–962S

    CAS  Google Scholar 

  2. Bodnar LM, Wisner KL (2005) Nutrition and depression: implications for improving mental health among childbearing-aged women. Biol Psychiatry 58:679–685

    Google Scholar 

  3. McNamara RK, Carlson SE (2006) Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids 75:329–349

    CAS  Google Scholar 

  4. Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352

    CAS  Google Scholar 

  5. Fleming TP, Kwong WY, Porter R, Ursell E, Fesenko I, Wilkins A, Miller DJ, Watkins AJ, Eckert JJ (2004) The embryo and its future. Biol Reprod 71:1046–1054

    CAS  Google Scholar 

  6. Koletzko B, Brands B, Demmelmair H (2011) The Early Nutrition Programming Project (EARNEST): 5 y of successful multidisciplinary collaborative research. Am J Clin Nutr 94:1749S–1753S

    CAS  Google Scholar 

  7. Horton C (2013) Network health dietitians. 84:28–29

  8. Paus T (2010) A primer for brain imaging: a tool for evidence-based studies of nutrition? Nutr Rev 68(Suppl 1):S29–S37

    Google Scholar 

  9. Benton D (2008) Micronutrient status, cognition and behavioral problems in childhood. Eur J Nutr 47(Suppl 3):38–50

    CAS  Google Scholar 

  10. Dobbing J (1985) Infant nutrition and later achievement. Am J Clin Nutr 41:477–484

    CAS  Google Scholar 

  11. Benton D (2010) Neurodevelopment and neurodegeneration: are there critical stages for nutritional intervention? Nutr Rev 68(Suppl 1):S6–S10

    Google Scholar 

  12. Moore K and Persaud P (2003) The developing human: clinically oriented embryology, 7th edn. Lavoisier

  13. Gluckman PD, Hanson MA, Pinal C (2005) The developmental origins of adult disease. Matern Child Nutr 1:130–141

    Google Scholar 

  14. Koletzko B, Brands B, Poston L, Godfrey K and Demmelmair H (2012) Early nutrition programming of long-term health. Proc Nutr Soc 1–8

  15. Isaacs E, Oates J (2008) Nutrition and cognition: assessing cognitive abilities in children and young people. Eur J Nutr 47(Suppl 3):4–24

    Google Scholar 

  16. Nelson CA, Bloom FE, Cameron JL, Amaral D, Dahl RE, Pine D (2002) An integrative, multidisciplinary approach to the study of brain-behavior relations in the context of typical and atypical development. Dev Psychopathol 14:499–520

    Google Scholar 

  17. Thompson RA, Nelson CA (2001) Developmental science and the media. Early brain development. Am Psychol 56:5–15

    CAS  Google Scholar 

  18. Bedi KS, Bhide PG (1988) Effects of environmental diversity on brain morphology. Early Hum Dev 17:107–143

    CAS  Google Scholar 

  19. Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    CAS  Google Scholar 

  20. Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133:3215–3221

    CAS  Google Scholar 

  21. Benton D (2012) Vitamins and neural and cognitive developmental outcomes in children. Proc Nutr Soc 71:14–26

    CAS  Google Scholar 

  22. Benton D (2008) The influence of children’s diet on their cognition and behavior. Eur J Nutr 47(Suppl 3):25–37

    Google Scholar 

  23. Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    Google Scholar 

  24. Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063

    Google Scholar 

  25. Palmer AA, Printz DJ, Butler PD, Dulawa SC, Printz MP (2004) Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Res 996:193–201

    CAS  Google Scholar 

  26. Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620S

    CAS  Google Scholar 

  27. Sommer A (1982) Nutritional blindness, xerophthalmia and keratomalacia. Oxford University Press, New York

    Google Scholar 

  28. Luo T, Wagner E, Drager UC (2009) Integrating retinoic acid signaling with brain function. Dev Psychol 45:139–150

    Google Scholar 

  29. Liao WL, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, Lee YC, Tsai TF, Takahashi H, Wagner M, Ghyselinck NB, Chambon P, Liu FC (2008) Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci USA 105:6765–6770

    CAS  Google Scholar 

  30. Fattal I, Friedmann N, Fattal-Valevski A (2011) The crucial role of thiamine in the development of syntax and lexical retrieval: a study of infantile thiamine deficiency. Brain 134:1720–1739

    Google Scholar 

  31. Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5:949–960

    CAS  Google Scholar 

  32. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, Verhoef P (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369:208–216

    CAS  Google Scholar 

  33. Garcia-Miss Mdel R, Perez-Mutul J, Lopez-Canul B, Solis-Rodriguez F, Puga-Machado L, Oxte-Cabrera A, Gurubel-Maldonado J and Arankowsky-Sandoval G. (2010) Folate, homocysteine, interleukin-6, and tumor necrosis factor alfa levels, but not the methylenetetrahydrofolate reductase C677T polymorphism, are risk factors for schizophrenia. J Psychiatr Res 44:441–446

  34. Coppen A, Bolander-Gouaille C (2005) Treatment of depression: time to consider folic acid and vitamin B12. J Psychopharmacol 19:59–65

    CAS  Google Scholar 

  35. Skorka A, Gieruszczak-Bialek D, Piescik M, Szajewska H (2012) Effects of prenatal and/or postnatal (maternal and/or child) folic acid supplementation on the mental performance of children. Crit Rev Food Sci Nutr 52:959–964

    CAS  Google Scholar 

  36. Roza SJ, van Batenburg-Eddes T, Steegers EA, Jaddoe VW, Mackenbach JP, Hofman A, Verhulst FC, Tiemeier H (2010) Maternal folic acid supplement use in early pregnancy and child behavioural problems: the Generation R Study. Br J Nutr 103:445–452

    CAS  Google Scholar 

  37. Steenweg-de Graaff J, Roza SJ, P. SEA, Hofman A, Verhulst FC, Jaddoe VW and Tiemeier H (2012) Maternal folate status in early pregnancy and child emotional and behavioral problems. The Generation R Study. Am J Clin Nutr

  38. Julvez J, Fortuny J, Mendez M, Torrent M, Ribas-Fito N, Sunyer J (2009) Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatr Perinat Epidemiol 23:199–206

    Google Scholar 

  39. Schlotz W, Jones A, Phillips DI, Gale CR, Robinson SM, Godfrey KM (2010) Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry 51:594–602

    Google Scholar 

  40. Caudill MA (2010) Pre- and postnatal health: evidence of increased choline needs. J Am Diet Assoc 110:1198–1206

    Google Scholar 

  41. Corbin KD, Zeisel SH (2012) The nutrigenetics and nutrigenomics of the dietary requirement for choline. Prog Mol Biol Transl Sci 108:159–177

    CAS  Google Scholar 

  42. Zeisel SH (2013) Nutrition in pregnancy: the argument for including a source of choline. Int J Womens Health 5:193–199

    CAS  Google Scholar 

  43. Poly C, Massaro JM, Seshadri S, Wolf PA, Cho E, Krall E, Jacques PF, Au R (2011) The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr 94:1584–1591

    CAS  Google Scholar 

  44. Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW (2004) Nutrients for cognitive development in school-aged children. Nutr Rev 62:295–306

    Google Scholar 

  45. Zimmermann M, Delange F (2004) Iodine supplementation of pregnant women in Europe: a review and recommendations. Eur J Clin Nutr 58:979–984

    CAS  Google Scholar 

  46. van Mil NH, Tiemeier H, Bongers-Schokking JJ, Ghassabian A, Hofman A, Hooijkaas H, Jaddoe VW, de Muinck Keizer-Schrama SM, Steegers EA, Visser TJ, Visser W, Ross HA, Verhulst FC, de Rijke YB, Steegers-Theunissen RP (2012) Low urinary iodine excretion during early pregnancy is associated with alterations in executive functioning in children. J Nutr 142(12):2167–2174. doi:10.3945/jn.112.161950

  47. Bath SC, Steer CD, Golding J, Emmett P and Rayman MP (2013) Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet

  48. Black MM (1998) Zinc deficiency and child development. Am J Clin Nutr 68:464S–469S

    CAS  Google Scholar 

  49. Benton D (2010) The influence of dietary status on the cognitive performance of children. Mol Nutr Food Res 54:457–470

    CAS  Google Scholar 

  50. Lozoff B (2007) Iron deficiency and child development. Food Nutr Bull 28:S560–S571

    Google Scholar 

  51. Szajewska H, Ruszczynski M, Chmielewska A (2010) Effects of iron supplementation in nonanemic pregnant women, infants, and young children on the mental performance and psychomotor development of children: a systematic review of randomized controlled trials. Am J Clin Nutr 91:1684–1690

    CAS  Google Scholar 

  52. Georgieff MK (2008) The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans 36:1267–1271

    CAS  Google Scholar 

  53. Hermoso M, Vucic V, Vollhardt C, Arsic A, Roman-Vinas B, Iglesia-Altaba I, Gurinovic M, Koletzko B (2011) The effect of iron on cognitive development and function in infants, children and adolescents: a systematic review. Ann Nutr Metab 59:154–165

    CAS  Google Scholar 

  54. Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW (1980) Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Hum Dev 4:131–138

    CAS  Google Scholar 

  55. Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:S129–S138

    CAS  Google Scholar 

  56. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I, Decsi T, Dudenhausen JW, Dupont C, Forsyth S, Hoesli I, Holzgreve W, Lapillonne A, Putet G, Secher NJ, Symonds M, Szajewska H, Willatts P, Uauy R (2008) The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 36:5–14

    CAS  Google Scholar 

  57. Krauss-Etschmann S, Shadid R, Campoy C, Hoster E, Demmelmair H, Jimenez M, Gil A, Rivero M, Veszpremi B, Decsi T, Koletzko BV (2007) Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. Am J Clin Nutr 85:1392–1400

    CAS  Google Scholar 

  58. Uauy R, Hoffman DR, Mena P, Llanos A, Birch EE (2003) Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. J Pediatr 143:S17–S25

    CAS  Google Scholar 

  59. Hadders-Algra M, Bouwstra H, van Goor SA, Dijck-Brouwer DA, Muskiet FA (2007) Prenatal and early postnatal fatty acid status and neurodevelopmental outcome. J Perinat Med 35(Suppl 1):S28–S34

    CAS  Google Scholar 

  60. Escolano-Margarit MV, Ramos R, Beyer J, Csabi G, Parrilla-Roure M, Cruz F, Perez-Garcia M, Hadders-Algra M, Gil A, Decsi T, Koletzko BV, Campoy C (2011) Prenatal DHA status and neurological outcome in children at age 5.5 years are positively associated. J Nutr 141:1216–1223

    CAS  Google Scholar 

  61. Campoy C, Escolano-Margarit MV, Ramos R, Parrilla-Roure M, Csabi G, Beyer J, Ramirez-Tortosa MC, Molloy AM, Decsi T and Koletzko BV (2011) Effects of prenatal fish-oil and 5-methyltetrahydrofolate supplementation on cognitive development of children at 6.5 y of age. Am J Clin Nutr 94:1880S–1888S

    Google Scholar 

  62. Hermoso M, Vollhardt C, Bergmann K, Koletzko B (2011) Critical micronutrients in pregnancy, lactation, and infancy: considerations on vitamin D, folic acid, and iron, and priorities for future research. Ann Nutr Metab 59:5–9

    CAS  Google Scholar 

  63. Gould JF, Smithers LG, Makrides M (2013) The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 97:531–544

    CAS  Google Scholar 

  64. Campoy C, Escolano-Margarit MV, Anjos T, Szajewska H, Uauy R (2012) Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107(Suppl 2):S85–S106

    CAS  Google Scholar 

  65. Dziechciarz P, Horvath A, Szajewska H (2010) Effects of n-3 long-chain polyunsaturated fatty acid supplementation during pregnancy and/or lactation on neurodevelopment and visual function in children: a systematic review of randomized controlled trials. J Am Coll Nutr 29:443–454

    CAS  Google Scholar 

  66. Grantham-McGregor S and Ani C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131:649S–666S. discussion 666S–668S

    Google Scholar 

  67. Sachdev H, Gera T, Nestel P (2005) Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Public Health Nutr 8:117–132

    Google Scholar 

  68. van den Briel T, West CE, Bleichrodt N, van de Vijver FJ, Ategbo EA, Hautvast JG (2000) Improved iodine status is associated with improved mental performance of schoolchildren in Benin. Am J Clin Nutr 72:1179–1185

    Google Scholar 

  69. Best C, Neufingerl N, Del Rosso JM, Transler C, van den Briel T, Osendarp S (2011) Can multi-micronutrient food fortification improve the micronutrient status, growth, health, and cognition of schoolchildren? A systematic review. Nutr Rev 69:186–204

    Google Scholar 

  70. Azizi F, Kalani H, Kimiagar M, Ghazi A, Sarshar A, Nafarabadi M, Rahbar N, Noohi S, Mohajer M, Yassai M (1995) Physical, neuromotor and intellectual impairment in non-cretinous schoolchildren with iodine deficiency. Int J Vitam Nutr Res 65:199–205

    CAS  Google Scholar 

  71. Iannotti LL, Tielsch JM, Black MM, Black RE (2006) Iron supplementation in early childhood: health benefits and risks. Am J Clin Nutr 84:1261–1276

    CAS  Google Scholar 

  72. Beard JL (2008) Why iron deficiency is important in infant development. J Nutr 138:2534–2536

    CAS  Google Scholar 

  73. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105:E51

    CAS  Google Scholar 

  74. Falkingham M, Abdelhamid A, Curtis P, Fairweather-Tait S, Dye L, Hooper L (2010) The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J 9:4

    Google Scholar 

  75. DiGirolamo AM, Ramirez-Zea M (2009) Role of zinc in maternal and child mental health. Am J Clin Nutr 89:940S–945S

    CAS  Google Scholar 

  76. Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85(Suppl 2):S139–S145

    CAS  Google Scholar 

  77. Louwman MW, van Dusseldorp M, van de Vijver FJ, Thomas CM, Schneede J, Ueland PM, Refsum H, van Staveren WA (2000) Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr 72:762–769

    CAS  Google Scholar 

  78. Nilsson TK, Yngve A, Bottiger AK, Hurtig-Wennlof A, Sjostrom M (2011) High folate intake is related to better academic achievement in Swedish adolescents. Pediatrics 128:e358–e365

    Google Scholar 

  79. Breimer LH and Nilsson TK (2012) Has folate a role in the developing nervous system after birth and not just during embryogenesis and gestation? Scand J Clin Lab Invest 72:185–191

    Google Scholar 

  80. Bonatto F, Polydoro M, Andrades ME, Conte da Frota ML Jr, Dal-Pizzol F, Rotta LN, Souza DO, Perry ML, Fonseca Moreira JC (2006) Effects of maternal protein malnutrition on oxidative markers in the young rat cortex and cerebellum. Neurosci Lett 406:281–284

    CAS  Google Scholar 

  81. Grantham-McGregor S, Baker-Henningham H (2005) Review of the evidence linking protein and energy to mental development. Public Health Nutr 8:1191–1201

    Google Scholar 

  82. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, Beyer J, Demmelmair H, Gruszfeld D, Dobrzanska A, Sengier A, Langhendries JP, Rolland Cachera MF, Grote V (2009) Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 89:1836–1845

    CAS  Google Scholar 

  83. Ilcol YO, Ozbek R, Hamurtekin E, Ulus IH (2005) Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem 16:489–499

    CAS  Google Scholar 

  84. Willatts P, Forsyth JS (2000) The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot Essent Fatty Acids 63:95–100

    CAS  Google Scholar 

  85. Richardson AJ, Ross MA (2000) Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot Essent Fatty Acids 63:1–9

    CAS  Google Scholar 

  86. Simopoulos AP (2010) Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med (Maywood) 235:785–795

    CAS  Google Scholar 

  87. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369:578–585

    Google Scholar 

  88. Morales E, Bustamante M, Gonzalez JR, Guxens M, Torrent M, Mendez M, Garcia-Esteban R, Julvez J, Forns J, Vrijheid M, Molto-Puigmarti C, Lopez-Sabater C, Estivill X, Sunyer J (2011) Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS ONE 6:e17181

    CAS  Google Scholar 

  89. Fergusson DM, Beautrais AL, Silva PA (1982) Breast-feeding and cognitive development in the first seven years of life. Soc Sci Med 16:1705–1708

    CAS  Google Scholar 

  90. Horwood LJ, Fergusson DM (1998) Breastfeeding and later cognitive and academic outcomes. Pediatrics 101:E9

    CAS  Google Scholar 

  91. Lauzon-Guillain B, Wijndaele K, Clark M, Acerini CL, Hughes IA, Dunger DB, Wells JC, Ong KK (2012) Breastfeeding and infant temperament at age three months. PLoS ONE 7:e29326

    Google Scholar 

  92. Kafouri S, Kramer M, Leonard G, Perron M, Pike GB, Richer L, Toro R, Veillette S, Pausova Z and Paus T (2013) Breastfeeding and brain structure in adolescence. Int J Epidemiol 42:150–159

    Google Scholar 

  93. EFSA Panel on Dietetic Products NaAN (2011) Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and brain, eye and nerve development (ID 501, 513, 540), maintenance of normal brain function (ID 497, 501, 510, 513, 519, 521, 534, 540, 688, 1323, 1360, 4294), maintenance of normal vision (ID 508, 510, 513, 519, 529, 540, 688, 2905, 4294), maintenance of normal cardiac function (ID 510, 688, 1360), “maternal health; pregnancy and nursing” (ID 514), “to fulfil increased omega-3 fatty acids need during pregnancy” (ID 539), “skin and digestive tract epithelial cells maintenance” (ID 525), enhancement of mood (ID 536), “membranes cell structure” (ID 4295), “anti-inflammatory action” (ID 4688) and maintenance of normal blood LDL-cholesterol concentrations (ID 4719) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 9, 2078

  94. Schulzke SM, Patole SK and Simmer K (2011) Long-chain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev CD000375

  95. Benton D, Kallus KW, Schmitt JA (2005) How should we measure nutrition-induced improvements in memory? Eur J Nutr 44:485–498

    Google Scholar 

  96. Bellisle F (2004) Effects of diet on behaviour and cognition in children. Br J Nutr 92(Suppl 2):S227–S232

    CAS  Google Scholar 

  97. Burgard P (2003) Critical evaluation of the methodology employed in cognitive development trials. Acta Paediatr 92:6–10

    CAS  Google Scholar 

  98. Hughes D, Bryan J (2003) The assessment of cognitive performance in children: considerations for detecting nutritional influences. Nutr Rev 61:413–422

    Google Scholar 

  99. Schmitt JA, Benton D, Kallus KW (2005) General methodological considerations for the assessment of nutritional influences on human cognitive functions. Eur J Nutr 44:459–464

    Google Scholar 

  100. Crawford JR, Garthwaite PH, Howell DC (2009) On comparing a single case with a control sample: an alternative perspective. Neuropsychologia 47:2690–2695

    Google Scholar 

  101. Tomalski P, Johnson MH (2010) The effects of early adversity on the adult and developing brain. Curr Opin Psychiatry 23:233–238

    Google Scholar 

  102. Nelson CA, Monk CS (2001) Handbook in developmental cognitive neuroscience. MIT Press, Cambridge, MA, pp 125–136

    Google Scholar 

  103. Deregnier RA, Nelson CA, Thomas KM, Wewerka S, Georgieff MK (2000) Neurophysiologic evaluation of auditory recognition memory in healthy newborn infants and infants of diabetic mothers. J Pediatr 137:777–784

    CAS  Google Scholar 

  104. Rosales FJ, Reznick JS, Zeisel SH (2009) Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: identifying and addressing methodological barriers. Nutr Neurosci 12:190–202

    Google Scholar 

  105. Paus T (2010) Population neuroscience: why and how. Hum Brain Mapp 31:891–903

    Google Scholar 

  106. White T, El Marroun H, Nijs I, Schmid M, van der Lugt A, Wielopolki P, Jaddoe V, Hofman A, Krestin GP, Tiemeier H and Verhulst FC (2013) Pediatric population-based neuroimaging and the Generation R Study: the intersection of developmental neuroscience and epidemiology. Eur J Epidemiol 28:99–111

    Google Scholar 

  107. Cade JE, Burley VJ, Warm DL, Thompson RL, Margetts BM (2004) Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev 17:5–22

    CAS  Google Scholar 

  108. Margetts BM, Nelson M (1997) Concepts in nutrition epidemiology. Oxford University Press, Oxford

    Google Scholar 

  109. Williams C, Birch EE, Emmett PM, Northstone K (2001) Stereoacuity at age 3.5 y in children born full-term is associated with prenatal and postnatal dietary factors: a report from a population-based cohort study. Am J Clin Nutr 73:316–322

    Google Scholar 

  110. Northstone K, Emmett PM (2008) Are dietary patterns stable throughout early and mid-childhood? A birth cohort study. Br J Nutr 100:1069–1076

    CAS  Google Scholar 

  111. Wirfalt E, Midthune D, Reedy J, Mitrou P, Flood A, Subar AF, Leitzmann M, Mouw T, Hollenbeck AR, Schatzkin A, Kipnis V (2009) Associations between food patterns defined by cluster analysis and colorectal cancer incidence in the NIH-AARP diet and health study. Eur J Clin Nutr 63:707–717

    CAS  Google Scholar 

  112. Cheong JL, Hunt RW, Anderson PJ, Howard K, Thompson DK, Wang HX, Bear MJ, Inder TE, Doyle LW (2008) Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics 121:e1534–e1540

    Google Scholar 

  113. Cooke RW, Foulder-Hughes L (2003) Growth impairment in the very preterm and cognitive and motor performance at 7 years. Arch Dis Child 88:482–487

    CAS  Google Scholar 

  114. Neubauer AP, Voss W, Kattner E (2008) Outcome of extremely low birth weight survivors at school age: the influence of perinatal parameters on neurodevelopment. Eur J Pediatr 167:87–95

    Google Scholar 

  115. Frisk V, Amsel R, Whyte HE (2002) The importance of head growth patterns in predicting the cognitive abilities and literacy skills of small-for-gestational-age children. Dev Neuropsychol 22:565–593

    Google Scholar 

  116. Group WMGRS (2007) WHO child growth standards: Methods and development: Head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age. WHO Press, Geneva

    Google Scholar 

  117. Group WMGRS (2009) WHO child growth standards: methods and development: growth velocity based on weight, length and head circumference. WHO Press, Geneva

    Google Scholar 

  118. Ebbeling CB, Pawlak DB, Ludwig DS (2002) Childhood obesity: public-health crisis, common sense cure. Lancet 360:473–482

    Google Scholar 

  119. Erickson SJ, Robinson TN, Haydel KF, Killen JD (2000) Are overweight children unhappy?: body mass index, depressive symptoms, and overweight concerns in elementary school children. Arch Pediatr Adolesc Med 154:931–935

    CAS  Google Scholar 

  120. Strauss RS (2000) Childhood obesity and self-esteem. Pediatrics 105:e15

    CAS  Google Scholar 

  121. Van Lieshout RJ, Taylor VH, Boyle MH (2011) Pre-pregnancy and pregnancy obesity and neurodevelopmental outcomes in offspring: a systematic review. Obes Rev 12:e548–e559

    Google Scholar 

  122. Cserjesi R, Molnar D, Luminet O, Lenard L (2007) Is there any relationship between obesity and mental flexibility in children? Appetite 49:675–678

    Google Scholar 

  123. Pauli-Pott U, Albayrak O, Hebebrand J, Pott W (2010) Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: dependence on age and inhibitory control component. Child Neuropsychol 16:592–603

    Google Scholar 

  124. Delgado-Rico E, Rio-Valle JS, Gonzalez-Jimenez E, Campoy C, Verdejo-Garcia A (2012) BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight. Obesity (Silver Spring) 20:1604–1610

    Google Scholar 

  125. Verdejo-Garcia A, Perez-Exposito M, Schmidt-Rio-Valle J, Fernandez-Serrano MJ, Cruz F, Perez-Garcia M, Lopez-Belmonte G, Martin-Matillas M, Martin-Lagos JA, Marcos A, Campoy C (2010) Selective alterations within executive functions in adolescents with excess weight. Obesity (Silver Spring) 18:1572–1578

    Google Scholar 

  126. Lohman TG, Roche AF and Martorell R (1988) Champaigne, Champaigne

  127. Ce WHO (1995) Physical status: the use and interpretation of anthropometry. WHO Tech Rep Ser 854:368–369

    Google Scholar 

  128. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65

    CAS  Google Scholar 

  129. Rasberry CN, Lee SM, Robin L, Laris BA, Russell LA, Coyle KK, Nihiser AJ (2011) The association between school-based physical activity, including physical education, and academic performance: a systematic review of the literature. Prev Med 52(Suppl 1):S10–S20

    Google Scholar 

  130. Tomporowski PD, Davis CL, Miller PH, Naglieri JA (2008) Exercise and children’s intelligence, cognition, and academic achievement. Educ Psychol Rev 20:111–131

    Google Scholar 

  131. Maddison R, Ni Mhurchu C, Jiang Y, Vander Hoorn S, Rodgers A, Lawes CM, Rush E (2007) International Physical Activity Questionnaire (IPAQ) and New Zealand Physical Activity Questionnaire (NZPAQ): a doubly labelled water validation. Int J Behav Nutr Phys Act 4:62

    Google Scholar 

  132. Melanson EL Jr, Freedson PS (1996) Physical activity assessment: a review of methods. Crit Rev Food Sci Nutr 36:385–396

    Google Scholar 

  133. Welk GJ, Corbin CB, Dale D (2000) Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport 71:S59–S73

    CAS  Google Scholar 

  134. Saris WH, Snel P, Baecke J, van Waesberghe F, Binkhorst RA (1977) A portable miniature solid-state heart rate recorder for monitoring daily physical activity. Biotelemetry 4:131–140

    CAS  Google Scholar 

  135. Troiano RP (2005) A timely meeting: objective measurement of physical activity. Med Sci Sports Exerc 37:S487–S489

    Google Scholar 

  136. Van Cauwenberghe E, Gubbels J, De Bourdeaudhuij I, Cardon G (2011) Feasibility and validity of accelerometer measurements to assess physical activity in toddlers. Int J Behav Nutr Phys Act 8:67

    Google Scholar 

  137. Calabro MA, Welk GJ, Eisenmann JC (2009) Validation of the SenseWear Pro Armband algorithms in children. Med Sci Sports Exerc 41:1714–1720

    Google Scholar 

  138. Janz KF, Lutuchy EM, Wenthe P, Levy SM (2008) Measuring activity in children and adolescents using self-report: PAQ-C and PAQ-A. Med Sci Sports Exerc 40:767–772

    Google Scholar 

  139. Treuth MS, Hou N, Young DR, Maynard LM (2005) Validity and reliability of the Fels physical activity questionnaire for children. Med Sci Sports Exerc 37:488–495

    Google Scholar 

  140. Glaser C, Lattka E, Rzehak P, Steer C, Koletzko B (2011) Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern Child Nutr 7(Suppl 2):27–40

    Google Scholar 

  141. Lattka E, Illig T, Koletzko B, Heinrich J (2010) Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol 21:64–69

    CAS  Google Scholar 

  142. Glaser C, Heinrich J, Koletzko B (2010) Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism 59:993–999

    CAS  Google Scholar 

  143. Lattka E, Eggers S, Moeller G, Heim K, Weber M, Mehta D, Prokisch H, Illig T, Adamski J (2010) A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1. J Lipid Res 51:182–191

    CAS  Google Scholar 

  144. Koletzko B, Lattka E, Zeilinger S, Illig T, Steer C (2011) Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr 93:211–219

    CAS  Google Scholar 

  145. Lattka E, Klopp N, Demmelmair H, Klingler M, Heinrich J, Koletzko B (2012) Genetic variations in polyunsaturated fatty acid metabolism–implications for child health? Ann Nutr Metab 60(Suppl 3):8–17

    CAS  Google Scholar 

  146. Lattka E, Rzehak P, Szabo E, Jakobik V, Weck M, Weyermann M, Grallert H, Rothenbacher D, Heinrich J, Brenner H, Decsi T, Illig T, Koletzko B (2011) Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am J Clin Nutr 93:382–391

    CAS  Google Scholar 

  147. Schaeffer L, Gohlke H, Muller M, Heid IM, Palmer LJ, Kompauer I, Demmelmair H, Illig T, Koletzko B, Heinrich J (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15:1745–1756

    CAS  Google Scholar 

  148. Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282

    Google Scholar 

  149. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R, Schalkwyk LC, Taylor A, Werts H, Moffitt TE (2007) Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci USA 104:18860–18865

    CAS  Google Scholar 

  150. Steer CD, Davey Smith G, Emmett PM, Hibbeln JR, Golding J (2010) FADS2 polymorphisms modify the effect of breastfeeding on child IQ. PLoS ONE 5:e11570

    Google Scholar 

  151. Wright RO, Hu H, Silverman EK, Tsaih SW, Schwartz J, Bellinger D, Palazuelos E, Weiss ST, Hernandez-Avila M (2003) Apolipoprotein E genotype predicts 24-month bayley scales infant development score. Pediatr Res 54:819–825

    CAS  Google Scholar 

  152. Laanpere M, Altmäe S, Stavreus-Evers A, Nilsson TK, Yngve A, Salumets A (2010) Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev 68:99–113

    Google Scholar 

  153. Altmäe S, Stavreus-Evers A, Ruiz JR, Laanpere M, Syvanen T, Yngve A, Salumets A, Nilsson TK (2010) Variations in folate pathway genes are associated with unexplained female infertility. Fertil Steril 94:130–137

    Google Scholar 

  154. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    CAS  Google Scholar 

  155. Harmon DL, Woodside JV, Yarnell JW, McMaster D, Young IS, McCrum EE, Gey KF, Whitehead AS, Evans AE (1996) The common ‘thermolabile’ variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 89:571–577

    CAS  Google Scholar 

  156. Pilsner JR, Hu H, Wright RO, Kordas K, Ettinger AS, Sanchez BN, Cantonwine D, Lazarus AL, Cantoral A, Schnaas L, Tellez-Rojo MM, Hernandez-Avila M (2010) Maternal MTHFR genotype and haplotype predict deficits in early cognitive development in a lead-exposed birth cohort in Mexico City. Am J Clin Nutr 92:226–234

    CAS  Google Scholar 

  157. Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, Tassone F, Hertz-Picciotto I (2011) Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology 22:476–485

    Google Scholar 

  158. Ordovas JM, Corella D (2004) Nutritional genomics. Annu Rev Genomics Hum Genet 5:71–118

    CAS  Google Scholar 

  159. Muller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4:315–322

    Google Scholar 

  160. Afman LA, Muller M (2012) Human nutrigenomics of gene regulation by dietary fatty acids. Prog Lipid Res 51:63–70

    CAS  Google Scholar 

  161. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, Singleton A, Bandinelli S, Cherubini A, Arnett D, Tsai MY, Ferrucci L (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5:e1000338

    Google Scholar 

  162. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141

    CAS  Google Scholar 

  163. Lenroot RK, Giedd JN (2011) Annual research review: developmental considerations of gene by environment interactions. J Child Psychol Psychiatry 52:429–441

    Google Scholar 

  164. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  Google Scholar 

  165. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  Google Scholar 

  166. Gabory A, Attig L, Junien C (2011) Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2:164–175

    Google Scholar 

  167. Roth TL, Sweatt JD (2011) Annual research review: epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52:398–408

    Google Scholar 

  168. Attig L, Gabory A, Junien C (2010) Nutritional developmental epigenomics: immediate and long-lasting effects. Proc Nutr Soc 69:221–231

    CAS  Google Scholar 

  169. Lumey LH, Stein AD, Kahn HS, van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES (2007) Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 36:1196–1204

    CAS  Google Scholar 

  170. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    CAS  Google Scholar 

  171. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, Slagboom PE, Heijmans BT (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE 4:e7845

    Google Scholar 

  172. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing-and sex-specific. Hum Mol Genet 18:4046–4053

    CAS  Google Scholar 

  173. Leung BM, Wiens KP, Kaplan BJ (2011) Does prenatal micronutrient supplementation improve children’s mental development? A systematic review. BMC Pregnancy Childbirth 11:12

    Google Scholar 

  174. Xie L, Innis SM (2008) Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr 138:2222–2228

    CAS  Google Scholar 

  175. Lippmann O (1969) Vision of young children. Arch Ophthalmol 81:763–775

    CAS  Google Scholar 

  176. Holmes JM, Beck RW, Repka MX, Leske DA, Kraker RT, Blair RC, Moke PS, Birch EE, Saunders RA, Hertle RW, Quinn GE, Simons KA, Miller JM (2001) The amblyopia treatment study visual acuity testing protocol. Arch Ophthalmol 119:1345–1353

    CAS  Google Scholar 

  177. Moke PS, Turpin AH, Beck RW, Holmes JM, Repka MX, Birch EE, Hertle RW, Kraker RT, Miller JM, Johnson CA (2001) Computerized method of visual acuity testing: adaptation of the amblyopia treatment study visual acuity testing protocol. Am J Ophthalmol 132:903–909

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish Ministry of Education (Grant no. SB2010-0025), Marie Curie post-doctoral fellowship (FP7, no. 329812, NutriOmics), and the European Community’s 7th Framework Programme (FP7/2008-2013) under grant agreement no. 212652 (NUTRIMENTHE Project ‘The Effect of Diet on the Mental Performance of Children’). The authors acknowledge all the people involved in the NUTRIMENTHE Research Group: White T, Roza S, Steer-Degraaff J, Golding J, Steer C, Grote V, Webber M, Gudrun H, Décsi T, Gyorei E, Csabi G, Martínez-Zaldívar C, Torres Espínola FJ, Muñoz Machicao AJ, Catena A, Carrasco A, Cruz F, Dios Luna J, Teresa Miranda M, Ibañez I, Beyer J, Fritsch M, Grote V, Haile G, Handel U, Hannibal I, Kreichauf S, Pawellek I, Schiess S, Verwied-Jorky S, von Kries R, Weber M, Dobrzańska A, Gruszfeld D, Janas R, Wierzbicka A, Socha P, Stolarczyk A, Socha J, Carlier C, Dain E, Goyens P, Van Hees JN, Hoyos J, Langhendries JP, Martin F, Poncelet P, Xhonneux A, Perrin E, Agostoni C, Giovannini M, Re Dionigi A, Riva E, Scaglioni S, Vecchi F, Verducci, Escribano J, Blanco A, Canals F, Cardona M, Ferré N, Gispert-Llauradó M, Mendez-Riera G, Rubio-Torrents MC, Zaragoza-Jordana M, Rauh-Pfeiffer A, Wiseman S, González Lamuño D, García Fuentes M, McDonald A, Winwood R, Reischl E, Thomas I, Gage H, Raats M, Lopez Robles JC, Gyorei E, Brands B, Mico B, Saris W, Hadders-Algra M, Hernell O, Rietschel M.

Conflict of interest

The authors declare no conflict of interest in relation to this manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Cristina Campoy.

Additional information

Tania Anjos and Signe Altmäe have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjos, T., Altmäe, S., Emmett, P. et al. Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project. Eur J Nutr 52, 1825–1842 (2013). https://doi.org/10.1007/s00394-013-0560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0560-4

Keywords

Navigation