Skip to main content

Advertisement

Log in

Vitamin D status indicators in indigenous populations in East Africa

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Sufficient vitamin D status may be defined as the evolutionary established circulating 25-hydroxyvitamin D [25(OH)D] matching our Paleolithic genome.

Methods

We studied serum 25(OH)D [defined as 25(OH)D2 + 25(OH)D3] and its determinants in 5 East African ethnical groups across the life cycle: Maasai (MA) and Hadzabe (HA) with traditional life styles and low fish intakes, and people from Same (SA; intermediate fish), Sengerema (SE; high fish), and Ukerewe (UK; high fish). Samples derived from non-pregnant adults (MA, HA, SE), pregnant women (MA, SA, SE), mother–infant couples at delivery (UK), infants at delivery and their lactating mothers at 3 days (MA, SA, SE), and lactating mothers at 3 months postpartum (SA, SE). Erythrocyte docosahexaenoic acid (RBC-DHA) was determined as a proxy for fish intake.

Results

The mean ± SD 25(OH)D of non-pregnant adults and cord serum were 106.8 ± 28.4 and 79.9 ± 26.4 nmol/L, respectively. Pregnancy, delivery, ethnicity (which we used as a proxy for sunlight exposure), RBC-DHA, and age were the determinants of 25(OH)D. 25(OH)D increased slightly with age. RBC-DHA was positively related to 25(OH)D, notably 25(OH)D2. Pregnant MA (147.7 vs. 118.3) and SE (141.9 vs. 89.0) had higher 25(OH)D than non-pregnant counterparts (MA, SE). Infant 25(OH)D at delivery in Ukerewe was about 65 % of maternal 25(OH)D.

Conclusions

Our ancient 25(OH)D amounted to about 115 nmol/L and sunlight exposure, rather than fish intake, was the principal determinant. The fetoplacental unit was exposed to high 25(OH)D, possibly by maternal vitamin D mobilization from adipose tissue, reduced insulin sensitivity, trapping by vitamin D-binding protein, diminished deactivation, or some combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Broadhurst CL, Cunnane SC, Crawford MA (1998) Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr 79:3–21

    Article  CAS  Google Scholar 

  2. Broadhurst CL, Wang Y, Crawford MA et al (2002) Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B: Biochem Mol Biol 131:653–673

    Article  Google Scholar 

  3. Braun DR, Harris JW, Levin NE et al (2010) Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc Natl Acad Sci USA 107:10002–10007

    Article  CAS  Google Scholar 

  4. Muskiet FAJ, Kuipers RS (2010) Lessons from shore-based hunter-gatherer diets in East Africa. In: Cunnane SC, Stewart KM (eds) Human brain evolution. The influence of freshwater and marine food resources. Wiley, Hoboken, pp 77–103

    Chapter  Google Scholar 

  5. Cunnane SC (2010) Human brain evolution: a question of solving key nutritional and metabolic constraints on mammalian brain development. In: Cunnane SC, Stewart KM (eds) Human brain evolution. The influence of freshwater and marine food resources. Wiley, Hoboken, pp 33–76

    Chapter  Google Scholar 

  6. Crawford MA (2010) Long-chain polyunsaturated fatty acids in human brain evolution. In: Cunnane SC, Stewart KM (eds) Human brain evolution. The influence of freshwater and marine food resources. Wiley, Hoboken, pp 13–31

    Chapter  Google Scholar 

  7. Kesby JP, Eyles DW, Burne TH et al (2011) The effects of vitamin D on brain development and adult brain function. Mol Cell Endocrinol 347:121–127

    Article  CAS  Google Scholar 

  8. Bourre JM, Paquotte P (2008) Seafood (wild and farmed) for the elderly: contribution to the dietary intakes of iodine, selenium, DHA and vitamins B12 and D. J Nutr Health Aging 12:186–192

    Article  CAS  Google Scholar 

  9. Sioen I, De Henauw S, Van Camp J et al (2009) Comparison of the nutritional-toxicological conflict related to seafood consumption in different regions worldwide. Regul Toxicol Pharmacol 55:219–228

    Article  CAS  Google Scholar 

  10. Stringer C (2000) Palaeoanthropology. Coasting out of Africa. Nature 405:24,5, 27

    Google Scholar 

  11. Yuen AW, Jablonski NG (2010) Vitamin D: in the evolution of human skin colour. Med Hypotheses 74:39–44

    Article  CAS  Google Scholar 

  12. Jablonski NG, Chaplin G (2000) The evolution of human skin coloration. J Hum Evol 39:57–106

    Article  CAS  Google Scholar 

  13. Jablonski NG, Chaplin G (2010) Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci USA 107(Suppl 2):8962–8968

    Article  CAS  Google Scholar 

  14. Brouwer DA, van Beek J, Ferwerda H et al (1998) Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr 79:527–532

    Article  CAS  Google Scholar 

  15. Ross AC, Taylor CL, Yaktine AL, Del Valle HB (2011) Dietary reference intakes for calcium and vitamin D. Available at: http://www.nap.edu/catalog/13050.html. Accessed 25 Dec 2011

  16. Richards MP, Schulting RJ, Hedges RE (2003) Archaeology: sharp shift in diet at onset of Neolithic. Nature 425:366

    Article  CAS  Google Scholar 

  17. Mata-Granados JM, Cuenca-Acevedo R, Luque de Castro MD et al (2010) Vitamin D deficiency and high serum levels of vitamin A increase the risk of osteoporosis evaluated by Quantitative Ultrasound Measurements (QUS) in postmenopausal Spanish women. Clin Biochem 43:1064–1068

    Article  CAS  Google Scholar 

  18. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  Google Scholar 

  19. Grant WB, Cross HS, Garland CF et al (2009) Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Prog Biophys Mol Biol 99:104–113

    Article  CAS  Google Scholar 

  20. Holick MF (2003) Evolution and function of vitamin D. Recent Results Cancer Res 164:3–28

    Article  CAS  Google Scholar 

  21. Urashima M, Segawa T, Okazaki M et al (2010) Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 91:1255–1260

    Article  CAS  Google Scholar 

  22. Vieth R (2006) What is the optimal vitamin D status for health? Prog Biophys Mol Biol 92:26–32

    Article  CAS  Google Scholar 

  23. Grant WB (2009) How strong is the evidence that solar ultraviolet B and vitamin D reduce the risk of cancer? An examination using Hill’s criteria for causality. Dermatoendocrinology 1:17–24

    Article  CAS  Google Scholar 

  24. Sackett DL, Rosenberg WM, Gray JA et al (1996) Evidence based medicine: what it is and what it isn’t. BMJ 312:71–72

    Article  CAS  Google Scholar 

  25. Blumberg J, Heaney RP, Huncharek M et al (2010) Evidence-based criteria in the nutritional context. Nutr Rev 68:478–484

    Article  Google Scholar 

  26. Hanekamp JC (2006) The precautionary principle: a critique in the context of the EU food supplements directive. Available at: http://anh-europe.org/files/PrecautionaryPrinciple-Critique-FSD-HanekampBast-EL06-2.pdf

  27. Schlingmann KP, Kaufmann M, Weber S et al (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421

    Article  CAS  Google Scholar 

  28. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–683

    Article  CAS  Google Scholar 

  29. Bjelakovic G, Gluud LL, Nikolova D et al (2011) Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev 7:1–202

    Google Scholar 

  30. Zittermann A, Schleithoff SS, Koerfer R (2007) Vitamin D and vascular calcification. Curr Opin Lipidol 18:41–46

    Article  CAS  Google Scholar 

  31. Freedman BI, Wagenknecht LE, Hairston KG et al (2010) Vitamin D, adiposity, and calcified atherosclerotic plaque in african-americans. J Clin Endocrinol Metab 95:1076–1083

    Article  CAS  Google Scholar 

  32. Michaelsson K, Baron JA, Snellman G et al (2010) Plasma vitamin D and mortality in older men: a community-based prospective cohort study. Am J Clin Nutr 92:841–848

    Article  CAS  Google Scholar 

  33. Dennis LK, Vanbeek MJ, Beane Freeman LE et al (2008) Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol 18:614–627

    Article  Google Scholar 

  34. Gezondheidsraad (2008) Naar een toereikende inname van vitamine D. Available at: http://www.gezondheidsraad.nl/sites/default/files/200815c.pdf

  35. Heaney RP, Holick MF (2011) Why the IOM recommendations for vitamin D are deficient. J Bone Miner Res 26(3):455–457

    Article  CAS  Google Scholar 

  36. Holick MF (2011) The IOM D-lemma. Public Health Nutr 14:939–941

    Article  Google Scholar 

  37. Luxwolda MF, Kuipers RS, Kema IP et al (2012) Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr 23:1–5

    Google Scholar 

  38. Marlowe F (2002) Why the Hadza are still hunter-gatherers. Ethnicity, hunter-gatherers, and the “other”: association or assimilation in Africa. Smithsonian Institution Press, Washington, DC, pp 247–275

    Google Scholar 

  39. Biss K, Ho KJ, Mikkelson B et al (1971) Some unique biologic characteristics of the Masai of East Africa. N Engl J Med 284:694–699

    Article  CAS  Google Scholar 

  40. de Jong WH, Graham KS, van der Molen JC et al (2007) Plasma free metanephrine measurement using automated online solid-phase extraction HPLC tandem mass spectrometry. Clin Chem 53:1684–1693

    Article  Google Scholar 

  41. Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 51:1683–1690

    Article  CAS  Google Scholar 

  42. Kuratko CN, Salem N Jr (2009) Biomarkers of DHA status. Prostaglandins Leukot Essent Fatty Acids 81:111–118

    Article  CAS  Google Scholar 

  43. Muskiet FA, van Doormaal JJ, Martini IA et al (1983) Capillary gas chromatographic profiling of total long-chain fatty acids and cholesterol in biological materials. J Chromatogr 278:231–244

    Article  CAS  Google Scholar 

  44. Zittermann A (2003) Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr 89:552–572

    Article  CAS  Google Scholar 

  45. Henry HL, Bouillon R, Norman AW et al (2010) 14th Vitamin D workshop consensus on vitamin D nutritional guidelines. J Steroid Biochem Mol Biol 121:4–6

    Article  CAS  Google Scholar 

  46. Taylor SN, Wagner CL, Hollis BW (2008) Vitamin D supplementation during lactation to support infant and mother. J Am Coll Nutr 27:690–701

    CAS  Google Scholar 

  47. Heaney RP (2005) The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol 97:13–19

    Article  CAS  Google Scholar 

  48. Linhares ER, Jones DA, Round JM et al (1984) Effect of nutrition on vitamin D status: studies on healthy and poorly nourished Brazilian children. Am J Clin Nutr 39:625–630

    CAS  Google Scholar 

  49. Hintzpeter B, Mensink GB, Thierfelder W et al (2008) Vitamin D status and health correlates among German adults. Eur J Clin Nutr 62:1079–1089

    Article  CAS  Google Scholar 

  50. Bourre JM, Paquotte PM (2008) Contributions (in 2005) of marine and fresh water products (finfish and shellfish, seafood, wild and farmed) to the French dietary intakes of vitamins D and B12, selenium, iodine and docosahexaenoic acid: impact on public health. Int J Food Sci Nutr 59:491–501

    Article  Google Scholar 

  51. Nakamura K, Nashimoto M, Okuda Y et al (2002) Fish as a major source of vitamin D in the Japanese diet. Nutrition 18:415–416

    Article  CAS  Google Scholar 

  52. Hollis BW, Johnson D, Hulsey TC et al (2011) Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res 26:2341–2357

    Article  CAS  Google Scholar 

  53. Kuipers RS, Luxwolda MF, Sango WS et al (2011) Maternal DHA equilibrium during pregnancy and lactation is reached at an erythrocyte DHA content of 8 g/100 g fatty acids. J Nutr 141:418–427

    Article  CAS  Google Scholar 

  54. Luxwolda MF, Kuipers RS, Sango WS et al (2011) A maternal erythrocyte DHA content of approximately 6 g% is the DHA status at which intrauterine DHA biomagnifications turns into bioattenuation and postnatal infant DHA equilibrium is reached. Eur J Nutr [Epub ahead of print]

  55. Park Y, Kim M (2011) Serum 25-hydroxyvitamin D concentrations are associated with erythrocyte levels of n-3 PUFA but not risk of CVD. Br J Nutr 106:1529–1534

    Article  CAS  Google Scholar 

  56. Bjorn LO, Wang T (2000) Vitamin D in an ecological context. Int J Circumpolar Health 59:26–32

    CAS  Google Scholar 

  57. Holick MF (2008) Vitamin D: a D-Lightful health perspectiv. Nutr Rev 66:S182–S194

    Article  Google Scholar 

  58. Dent CE, Gupta MM (1975) Plasma 25-hydroxyvitamin-D-levels during pregnancy in Caucasians and in vegetarian and non-vegetarian Asians. Lancet 2:1057–1060

    Article  CAS  Google Scholar 

  59. Salle BL, Delvin EE, Lapillonne A et al (2000) Perinatal metabolism of vitamin D. Am J Clin Nutr 71:1317S–1324S

    CAS  Google Scholar 

  60. Hillman LS, Slatopolsky E, Haddad JG (1978) Perinatal vitamin D metabolism. IV. Maternal and cord serum 24,25-dihydroxyvitamin D concentrations. J Clin Endocrinol Metab 47:1073–1077

    Article  CAS  Google Scholar 

  61. Brooke OG, Brown IR, Bone CD et al (1980) Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J 280:751–754

    Article  CAS  Google Scholar 

  62. Cross NA, Hillman LS, Allen SH et al (1995) Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr 61:514–523

    CAS  Google Scholar 

  63. Ardawi MS, Nasrat HA, BA’Aqueel HS (1997) Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrinol 137:402–409

    Article  CAS  Google Scholar 

  64. Gomme PT, Bertolini J (2004) Therapeutic potential of vitamin D-binding protein. Trends Biotechnol 22:340–345

    Article  CAS  Google Scholar 

  65. Hadden DR, McLaughlin C (2009) Normal and abnormal maternal metabolism during pregnancy. Semin Fetal Neonatal Med 14:66–71

    Article  Google Scholar 

  66. Novakovic B, Sibson M, Ng HK et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838–14848

    Article  CAS  Google Scholar 

  67. Almeras L, Eyles D, Benech P et al (2007) Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 7:769–780

    Article  CAS  Google Scholar 

  68. Eyles DW, Feron F, Cui X et al (2009) Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 34(Suppl 1):S247–S257

    Article  CAS  Google Scholar 

  69. Harvey L, Burne TH, McGrath JJ et al (2010) Developmental vitamin D3 deficiency induces alterations in immune organ morphology and function in adult offspring. J Steroid Biochem Mol Biol 121:239–242

    Article  CAS  Google Scholar 

  70. Belderbos ME, Houben ML, Wilbrink B et al (2011) Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics 127:e1513–e1520

    Article  Google Scholar 

  71. Javaid MK, Crozier SR, Harvey NC et al (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367:36–43

    Article  CAS  Google Scholar 

  72. Hoogenboezem T, Degenhart HJ, de Muinck Keizer-Schrama SM et al (1989) Vitamin D metabolism in breast-fed infants and their mothers. Pediatr Res 25:623–628

    Article  CAS  Google Scholar 

  73. Holick MF, Binkley NC, Bischoff-Ferrari HA et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930

    Article  CAS  Google Scholar 

  74. Hollis BW, Wagner CL (2004) Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr 80:1752S–1758S

    CAS  Google Scholar 

  75. Webb AR (2006) Who, what, where and when-influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 92:17–25

    Article  CAS  Google Scholar 

  76. Zittermann A, Pilz S, Borgermann J et al (2011) Calcium supplementation and vitamin D: a trigger for adverse cardiovascular events? Future Cardiol 7:725–727

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NIMR, Tanzania, for their correspondence and help in the writing of our proposal for ethical clearance. We further thank em. Prof. E. R. Boersma, Prof. J. J. M. van Roosmalen, Prof. S. Massawe, Prof. A. Massawe, Prof. G. V. Mann, J. van der Meulen, P. Gunneweg, P. Schwerzel, R. Shaffer, Dr. J. Changalucha, Drs. C. van Rij, Sr. M. J. Voeten, J. Lugalla, G. Msafiri, N. Mchomvu, S. Mazzuki, rafiki Martini, and all other staff, doctors, and nurses from the local hospitals in Tanzania for their help in our project. We thank Dr. M. Volmer, for his statistical and technical assistance and the VSB Foundation and FrieslandCampina (Dr. A. Schaafsma) for their financial support.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine F. Luxwolda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luxwolda, M.F., Kuipers, R.S., Kema, I.P. et al. Vitamin D status indicators in indigenous populations in East Africa. Eur J Nutr 52, 1115–1125 (2013). https://doi.org/10.1007/s00394-012-0421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0421-6

Keywords

Navigation