Skip to main content
Log in

Comparison of risk-calculator and MRI and consecutive pathways as upfront stratification for prostate biopsy

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

In biopsy naïve men suspected for prostate cancer (PCa), it is uncertain how a risk-calculator and bi-parametric (bp) MRI should be combined to decide on prostate biopsy, balancing cancer detection rates and diagnostic burden.

Methods

Prospective, single centre cohort study (August 2018–April 2019). All patients referred with serum PSA ≥ 3 ng/ml or abnormal digital rectal examination received bpMRI and risk for PCa was calculated using the ERSPC risk-calculator. Men with either PI-RADS ≥ 3 or calculator risk-score > 20% were recommended to undergo systematic biopsy (SB) and targeted biopsy (TB) of any visible lesion (reference pathway). Eight different derived diagnostic pathways were compared to the reference pathway regarding cancer detection, number of biopsies and bpMRIs performed.

Results

Of 496 patients; 233 (47%) had a risk-calculator score of > 20%; 201 (41%) had PI-RADS score ≥ 3. The reference pathway detected PCa in 32.1%, clinically significant (cs) PCa in 19.4%, with 41% avoided biopsies, but 0% avoided bpMRI. Stratification with only risk-calculator: 76% csPCa diagnosed, 53% avoided biopsies and 100% avoided bpMRI. Stratification with only bpMRI: 97% csPCa diagnosed, 59% avoided biopsies, but 0% avoided bpMRI. A pathway with risk-calculator first, followed only with bpMRI when high-risk: 81% csPCa diagnosed, 72% avoided biopsies and 53% avoided bpMRI.

Conclusion

Upfront bpMRI as a risk stratification tool outperforms risk-calculator in detecting significant disease. Applying the risk-calculator first to decide on performing an MRI, avoids 1 out of 2 MRIs, but up to 1 out of 5 significant cancers are missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Anonymized data available upon request.

References

  1. Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822. https://doi.org/10.1016/S0140-6736(16)32401-1

    Article  PubMed  Google Scholar 

  2. Fine SW, Epstein JI (2008) A contemporary study correlating prostate needle biopsy and radical prostatectomy Gleason score. J Urol 179(4):1335–1338. https://doi.org/10.1016/j.juro.2007.11.057(discussion 1338-9)

    Article  PubMed  Google Scholar 

  3. Kasivisvanathan V, Rannikko AS, Borghi M et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378(19):1767–1777. https://doi.org/10.1056/NEJMoa1801993

    Article  PubMed  Google Scholar 

  4. Mottet N, Bellmunt J, Bolla M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4):618–629. https://doi.org/10.1016/j.eururo.2016.08.003

    Article  PubMed  Google Scholar 

  5. Mannaerts CK, Kajtazovic A, Lodeizen OAP et al (2019) The added value of systematic biopsy in men with suspicion of prostate cancer undergoing multiparametric MRI-targeted biopsy. Urol Oncol 37(5):298.e1-298.e9. https://doi.org/10.1016/j.urolonc.2019.01.005

    Article  Google Scholar 

  6. Moldovan PC, Van den Broeck T, Sylvester R et al (2017) What Is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European association of urology prostate cancer guidelines panel. Eur Urol 72(2):250–266. https://doi.org/10.1016/j.eururo.2017.02.026

    Article  PubMed  Google Scholar 

  7. Roobol MJ, Steyerberg EW, Kranse R et al (2010) A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur Urol 57(1):79–85. https://doi.org/10.1016/j.eururo.2009.08.025

    Article  PubMed  Google Scholar 

  8. Schoots IG, Padhani AR (2020) Personalizing prostate cancer diagnosis with multivariate risk prediction tools: how should prostate MRI be incorporated? World J Urol 38(3):531–545. https://doi.org/10.1007/s00345-019-02899-0

    Article  PubMed  Google Scholar 

  9. Nederlandse vereniging voor Urologie (2007) Prostaatcarcinoom. Landelijke richtlijn, versie 2.0. Integr Kankercent Ned 285. https://www.nhg.org/sites/default/files/content/nhg_org/uploads/prostaatcarcinoom.pdf

  10. Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757. https://doi.org/10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kuru TH, Roethke MC, Rieker P et al (2013) Histology core-specific evaluation of the European society of urogenital radiology (ESUR) standardised scoring system of multiparametric magnetic resonance imaging (mpMRI) of the prostate. BJU Int 112(8):1080–1087. https://doi.org/10.1111/bju.12259

    Article  CAS  PubMed  Google Scholar 

  12. Epstein JI, Amin MB, Beltran H et al (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38(6):756–767. https://doi.org/10.1097/PAS.0000000000000208

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siddiqui MM, Rais-Bahrami S, Turkbey B et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397. https://doi.org/10.1001/jama.2014.17942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tonttila PP, Lantto J, Pääkkö E et al (2016) Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol 69(3):419–425. https://doi.org/10.1016/j.eururo.2015.05.024

    Article  PubMed  Google Scholar 

  15. Elkhoury FF, Felker ER, Kwan L et al (2019) Comparison of targeted vs. systematic prostate biopsy in men who are biopsy naive: the prospective assessment of image registration in the diagnosis of prostate cancer (PAIREDCAP) study. JAMA Surg 154(9):811–818. https://doi.org/10.1001/jamasurg.2019.1734

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drost F-JH, Osses DF, Nieboer D et al (2019) Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane database Syst Rev 4:CD012663. https://doi.org/10.1002/14651858.CD012663.pub2

    Article  PubMed  Google Scholar 

  17. van der Leest M, Cornel E, Israël B et al (2019) Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective mu. Eur Urol 75(4):570–578. https://doi.org/10.1016/j.eururo.2018.11.023

    Article  PubMed  Google Scholar 

  18. Stolk TT, de Jong IJ, Kwee TC et al (2019) False positives in PIRADS (V2) 3, 4, and 5 lesions: relationship with reader experience and zonal location. Abdom Radiol (NY) 44(3):1044–1051. https://doi.org/10.1007/s00261-019-01919-2

    Article  Google Scholar 

  19. Vargas HA, Hötker AM, Goldman DA et al (2016) Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol 26(6):1606–1612. https://doi.org/10.1007/s00330-015-4015-6

    Article  CAS  PubMed  Google Scholar 

  20. Kang Z, Min X, Weinreb J et al (2019) Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol 212(2):357–365. https://doi.org/10.2214/AJR.18.20103

    Article  PubMed  Google Scholar 

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan J. Reesink.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study has been approved by the local research ethics committee of the St. Antonius Hospital Utrecht/Nieuwegein (W17.087) and was conducted in accordance with Good Clinical Practice Guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reesink, D.J., Schilham, M.G.M., van der Hoeven, E.J.R.J. et al. Comparison of risk-calculator and MRI and consecutive pathways as upfront stratification for prostate biopsy. World J Urol 39, 2453–2461 (2021). https://doi.org/10.1007/s00345-020-03488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-020-03488-2

Keywords

Navigation