Skip to main content

Advertisement

Log in

Technical performance evaluation of a human brain PET/MRI system

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Technical performance evaluation of a human brain PET/MRI system.

Methods

The magnetic field compatible positron emission tomography (PET) insert is based on avalanche photodiode (APD) arrays coupled with lutetium oxyorthosilicate (LSO) crystals and slip-fits into a slightly modified clinical 3-T MRI system. The mutual interference between the two imaging techniques was minimised by the careful design of the hardware to maintain the quality of the B 0 and B 1 field homogeneity.

Results

The signal-to-noise ratio (SNR) and the homogeneity of the MR images were minimally influenced by the presence of the PET. Measurements according to the Function Biomedical Informatics Research Network (FBIRN) protocol proved the combined system’s ability to perform functional MRI (fMRI). The performance of the PET insert was evaluated according to the National Electrical Manufacturers Association (NEMA) standard. The noise equivalent count rate (NEC) peaked at 30.7 × 103 counts/s at 7.3 kBq/mL. The point source sensitivity was greater than 7 %. The spatial resolution in the centre field of view was less than 3 mm. Patient data sets clearly revealed a noticeably good PET and MR image quality.

Conclusion

PET and MRI phantom tests and first patient data exhibit the device’s potential for simultaneous multiparametric imaging.

Key Points

Combination of PET and MRI is a new emerging imaging technology.

Evaluated brain PET/MRI enables uncompromised imaging performance.

PET/MRI aims to provide multiparametric imaging allowing acquisition of morphology and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

attenuation correction

AC_T1_FLASH3D:

T1w flash sequence for attenuation correction

APD:

avalanche photodiode

B 0 :

main magnetic field

B 1 :

radiofrequency field

BOLD:

blood oxygen level-dependent

CFD:

constant fraction discriminator

CSI:

chemical shift imaging sequence

CP:

circular polarised

EPI:

echo planar imaging

EPI_BOLD:

EPI BOLD sequence

ΔTE:

difference between echo times

FBIRN:

Function Biomedical Informatics Research Network

FLASH:

fast low angle shot

FWHM:

full width at half maximum

FWTM:

full width at tenth maximum

G-APD:

Geiger mode avalanche photodiode

γ:

gyromagnetic ratio

GE_MAP:

gradient echo map

LSO:

lutetium oxyorthosilicate

MRS:

magnetic resonance spectroscopy

NEMA:

National Electrical Manufacturers Association

NEC:

noise equivalent count rate

NSE:

normal spin echo

OP-OSEM3D:

ordinary Poisson ordered subset expectation maximisation

P(TE10):

phase map with echo time of 10 ms

P(TE20):

phase map with echo time of 20 ms

r_dc:

radius of decorrelation

RF_FIELD:

B 1 mapping service sequence

RF_NOISE:

manufacturer service sequence

rms:

root mean square

SE:

spin echo sequence

σ :

noise signal

s max :

maximal signal intensity

s min :

minimal signal intensity

SFNR:

signal to fluctuation noise ratio

SNR:

signal to noise ratio

STE:

stimulated echo

SVS_SE:

single voxel press spectroscopy sequence

T1_FL2d:

T1w flash sequence

T2_TSE:

T2w turbo spin echo sequence

TOF:

time of flight

TX/RX:

transmit/receive

UTE:

ultra short echo time sequence

References

  1. Schlemmer HP, Pichler BJ, Schmand M et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  2. Pichler BJ, Kolb A, Nagele T, Schlemmer HP (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51:333–336

    Article  PubMed  Google Scholar 

  3. Marsden PK, Strul D, Keevil SF, Williams SC, Cash D (2002) Simultaneous PET and NMR. Br J Radiol 75:S53–59

    Google Scholar 

  4. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  PubMed  CAS  Google Scholar 

  5. Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710

    Article  PubMed  CAS  Google Scholar 

  6. Raylman RR, Majewski S, Lemieux SK et al (2006) Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 51:6371

    Article  PubMed  Google Scholar 

  7. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976

    PubMed  Google Scholar 

  8. Raylman RR, Majewski S, Velan SS, et al (2007) Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Res 186:305–310

    Google Scholar 

  9. Heiss WD (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl 1):105–112

    Article  Google Scholar 

  10. Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36(Suppl 1):113–120

    Article  Google Scholar 

  11. Nekolla SG, Martinez-Moeller A, Saraste A (2009) PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging 36(Suppl 1):121–130

    Article  Google Scholar 

  12. Brix G, Lechel U, Glatting G et al (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46(4):608–613

    PubMed  CAS  Google Scholar 

  13. Buscher K, Judenhofer MS, Kuhlmann MT et al (2010) Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med 51:1277–1284

    Article  PubMed  Google Scholar 

  14. Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  15. Martinez-Moller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  16. Catana C, van der Kouwe A, Benner T et al (2010) Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51:1431–1438

    Article  PubMed  CAS  Google Scholar 

  17. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51:812–818

    Article  PubMed  Google Scholar 

  18. Watson C, Byars L, Michel C, Rothfuss H (2008) Scatter/trues detection efficiency compensation in scatter correction of PET emission data. IEEE Nucl Sci Symp Conf Rec 5493–5497

  19. Witoszynskyj S, Rauscher A, JrR R, Barth M (2009) Phase unwrapping of MR images using ΦUN – a fast and robust region growing algorithm. Med Image Anal 13:257–268

    Article  PubMed  Google Scholar 

  20. Jiru F, Klose U (2006) Fast 3D radiofrequency field mapping using echo-planar imaging. Magn Reson Med 56(6):1375–1379

    Article  PubMed  CAS  Google Scholar 

  21. Wehrl HF, Judenhofer MS, Thielscher A, Martirosian P, Schick F, Pichler BJ (2011) Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med 65:269–279

    Article  PubMed  Google Scholar 

  22. Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23(6):827–839

    Article  PubMed  Google Scholar 

  23. Kaufman L, Kramer DM, Crooks LE, Ortendahl DA (1989) Measuring signal-to-noise ratios in MR imaging. Radiology 173:265–267

    PubMed  CAS  Google Scholar 

  24. Byars LG, Sibomana M, Burbar Z, et al (2005) Variance reduction on randoms from coincidence histograms for the HRRT. IEEE Nucl Sci Symp Conf Rec 2622–2626

  25. Hong IK, Chung ST, Kim HK, Kim YB, Son YD, Cho ZH (2007) Ultra fast symmetry and SIMD-based projection-backprojection (SSP) algorithm for 3-D PET image reconstruction. IEEE Trans Med Imaging 26:789–803

    Article  PubMed  CAS  Google Scholar 

  26. Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44:291–315

    PubMed  Google Scholar 

  27. Hofmann M, Pichler B, Scholkopf B, Beyer T (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):93–104

    Article  Google Scholar 

  28. Kolb A, Lorenz E, Judenhofer MS, Renker D, Lankes K, Pichler BJ (2010) Evaluation of Geiger-mode APDs for PET block detector designs. Phys Med Biol 55(7):1815–1832

    Article  PubMed  Google Scholar 

  29. de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA (2007) Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 52:1505–1526

    Article  PubMed  Google Scholar 

  30. Boss A, Kolb A, Hofmann M et al (2010) Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol 45:270–274

    Article  PubMed  Google Scholar 

  31. Boss A, Bisdas S, Kolb A et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51:1198–1205

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Andreas Schmid and Johannes Breuer for their helpful advice on programming the software for the data analysis. We thank the Radiopharmacy of the University Hospital Tübingen for providing the radiotracers as well as Andreas Boss for helpful discussions.

The authors also appreciate the discussions within the Brain PET insert partners at MGH, Boston Massachusetts, USA, the Research Center Jülich, Germany, and Emory University, Atlanta, Georgia, USA.

Financial support from the German Research Association (DFG) was provided through grants PI771/1-1, PI771/3-1, PI771/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd J. Pichler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic supplementary material. (DOC 440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, A., Wehrl, H.F., Hofmann, M. et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol 22, 1776–1788 (2012). https://doi.org/10.1007/s00330-012-2415-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2415-4

Keywords

Navigation