Skip to main content

Advertisement

Log in

Modern dental imaging: a review of the current technology and clinical applications in dental practice

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

A review of modern imaging techniques commonly used in dental practice and their clinical applications is presented. The current dental examinations consist of intraoral imaging with digital indirect and direct receptors, while extraoral imaging is divided into traditional tomographic/panoramic imaging and the more recently introduced cone beam computed tomography. Applications, limitations and current trends of these dental “in-office” radiographic techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Farman AG (2005) ALARA still applies. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 100:395–397

    Article  Google Scholar 

  2. Valentin J (2007) The 2007 recommendations of the international commission on radiological protection. Elsevier, Oxford

    Google Scholar 

  3. Ludlow JB, Davies-Ludlow LE, White SC (2008) Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J Am Dent Assoc 139:1237–1243

    PubMed  Google Scholar 

  4. Commission E (2004) Radiation protection 136. European guidelines on radiation protection in dental radiology. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  5. Brooks SL, Atchinson KA (2004) Guidelines for prescribing dental radiographs. In: White SC, Pharoah MJ (eds) Oral Radiology. Principles and Interpretation, 5th edn. Mosby, St. Louis, pp 265–277

  6. Taguchi A, Asano A, Ohtsuka M, Nakamoto T, Suei Y, Tsuda M, Kudo Y, Inagaki K, Noguchi T, Tanimoto K, Jacobs R, Klemetti E, White SC, Horner K, OSPD International Collaborative Group (2008) Observer performance in diagnosing osteoporosis by dental panoramic radiographs: results from the osteoporosis screening project in dentistry (OSPD). Bone 43:209–213

    Article  CAS  PubMed  Google Scholar 

  7. Devlin H, Allen P, Graham J, Jacobs R, Nicopoulou-Karayianni K, Lindh C, Marjanovic E, Adams J, Pavitt S, van der Stelt P, Horner K (2008) The role of the dental surgeon in detecting osteoporosis: the OSTEODENT study. Br Dent J 204(E16):560–561

    Google Scholar 

  8. Wenzel A (2004) Bitewing and digital bitewing radiography for detection of caries lesions. J Dent Res 83:C72–C75

    Article  PubMed  Google Scholar 

  9. Pretty IA (2006) Caries detection and diagnosis: novel technologies. J Dent 34:727–739

    Article  PubMed  Google Scholar 

  10. Tugnait A, Clerehugh V, Hirschmann PN (2000) The usefulness of radiographs in diagnosis and management of periodontal diseases: a review. J Dent 28:219–226

    Article  CAS  PubMed  Google Scholar 

  11. Mol A (2004) Imaging methods in periodontology. Periodontology 34:34–48, 2000

    Article  Google Scholar 

  12. Nair MK, Nair UP (2007) Digital and advanced imaging in endodontics: a review. J Endod 33:1–6

    Article  PubMed  Google Scholar 

  13. Cotton TP, Geisler TM, Holden DT, Schwartz SA, Schindler WG (2007) Endodontic applications of cone-beam volumetric tomography. J Endod 33:1121–1132

    Article  PubMed  Google Scholar 

  14. Quintero JC, Trosien A, Hatcher D, Kapila S (1999) Craniofacial imaging in orthodontics: historical perspective, current status and future developments. Angle Orthod 69:491–506

    CAS  PubMed  Google Scholar 

  15. Müssig E, Wörtche R, Lux CJ (2005) Indications for digital volume tomography in orthodontics. J Orofac Orthop 66:241–249

    Article  PubMed  Google Scholar 

  16. Scarfe WC (2005) Imaging of maxillofacial trauma: evolutions and emerging revolutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 100:S75–S96

    Article  Google Scholar 

  17. Cohenca N, Simon JH, Roges R, Morag Y, Malfaz JM (2007) Clinical indications for digital imaging in dento-alveolar trauma. Part 1: traumatic injuries. Dent Traumatol 23:95–104

    Article  PubMed  Google Scholar 

  18. BouSerhal C, Jacobs R, Quirynen M, van Steenberghe D (2002) Imaging technique selection for the preoperative planning of oral implants: a review of the literature. Clin Implant Dent Relat Res 4:156–172

    Article  PubMed  Google Scholar 

  19. Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D (2006) State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig 10:1–7

    Article  PubMed  Google Scholar 

  20. Lewis EL, Dolwick MF, Abramowicz S, Reeder SL (2008) Contemporary imaging of the temporomandibular joint. Dent Clin N Am 52:875–890

    Article  PubMed  Google Scholar 

  21. Learreta JA, Matos JL, Matos MF, Durst AC (2009) Current diagnosis of temporomandibular pathologies. Cranio 27:125–133

    PubMed  Google Scholar 

  22. Boeddinghaus R, Whyte A (2008) Current concepts in maxillofacial imaging. Eur J Radiol 66:396–418

    Article  PubMed  Google Scholar 

  23. Campbell PD Jr, Zinreich SJ, Aygun N (2009) Imaging of the paranasal sinuses and in-office CT. Otolaryngol Clin N Am 42:753–764

    Article  Google Scholar 

  24. Potter BJ, Shrout MK, Harrell JC (1995) Reproducibility of beam alignment using different bite-wing radiographic techniques. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 79:532–535

    Article  CAS  Google Scholar 

  25. Sanderink GCH (2003) Intra-oral and extra-oral digital imaging: an overview of factors relevant to detector design. Nucl Instr Meth Phys Res A 509:256–261

    Article  CAS  Google Scholar 

  26. Nicopoulou-Karayianni K, Koligliatis T, Donta-Bakogianni C, Karayiannis A (2006) The influence of the x-ray spectrum at compact bone-titanium interfaces in digital dental radiography. Dentomaxillofac Radiol 35:426–431

    Article  CAS  PubMed  Google Scholar 

  27. Helmrot E, Carlsson GA, Eckerdal O (1994) Effects of contrast equalization on energy imparted to the patient: a comparison of two dental generators and two types of intraoral film. Dentomaxillofac Radiol 23:83–90

    CAS  PubMed  Google Scholar 

  28. Litwiller D (2001) CCD vs CMOS: facts and fiction. Photonics Spectra 1:154–158

    Google Scholar 

  29. Kitagawa H, Scheetz JP, Farman AG (2003) Comparison of complementary metal oxide semiconductor and charge-coupled device intraoral X-ray detectors using subjective image quality. Dentomaxillofac Radiol 32:408–411

    Article  CAS  PubMed  Google Scholar 

  30. Farman AG, Farman TT (2005) A comparison of 18 different x-ray detectors currently used in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 99:485–189

    Article  Google Scholar 

  31. Paurazas SB, Geist JR, Pink FE, Hoen MM, Steinman HR (2000) Comparison of diagnostic accuracy of digital imaging by using CCD and CMOS-APS sensors with E-speed film in the periapical bony lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 89:356–362

    Article  CAS  Google Scholar 

  32. Tsuchida R, Araki K, Endo A, Funahashi I, Okano T (2005) Physical properties and ease of operation of a wireless intraoral x-ray sensor. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 100:603–608

    Article  Google Scholar 

  33. Suetens P (2002) Fundamentals of medical imaging. Cambridge University Press, New York

    Google Scholar 

  34. Berkhout WE, Beuger DA, Sanderink GC, van der Stelt PF (2004) The dynamic range of digital radiographic systems: dose reduction or risk of overexposure? Dentomaxillofac Radiol 33:1–5

    Article  CAS  PubMed  Google Scholar 

  35. Borg E (1999) Some characteristics of solid-state and photo-stimulable phosphor detectors for intra-oral radiography. Swed Dent J Suppl 139:1–67

    Google Scholar 

  36. Pfeiffer P, Schmage P, Nergiz I, Platzer U (2000) Effects of different exposure values on diagnostic accuracy of digital images. Quintessence Int 31:257–260

    CAS  PubMed  Google Scholar 

  37. Inglese JM, Farman TT, Farman AG (2004) The sixth-generation: introduction of two new high fill factor complementary metal oxide semiconductor (or SuperCMOS) intraoral X-ray detectors. Int Congr Ser 1268:1152–1156

    Article  Google Scholar 

  38. Farman TT, Vandre RH, Pajak JC, Miller SR, Lempicki A, Farman AG (2005) Effects of scintillator on the modulation transfer function (MTF) of a digital imaging system. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 99:608–613

    Article  Google Scholar 

  39. Kashima I (1995) Computed radiography with photostimulable phosphor in oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 80:577–598

    Article  CAS  Google Scholar 

  40. Araki K, Endo A, Okano T (2000) An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution. Dentomaxillofac Radiol 29:76–80

    Article  CAS  PubMed  Google Scholar 

  41. Bhaskaran V, Qualtrough AJ, Rushton VE, Worthington HV, Horner K (2005) A laboratory comparison of three imaging systems for image quality and radiation exposure characteristics. Int Endod J 38:645–652

    Article  CAS  PubMed  Google Scholar 

  42. Benn DK (1994) Radiographic caries diagnosis and monitoring. Dentomaxillofac Radiol 23:69–72

    CAS  PubMed  Google Scholar 

  43. Mol A (2000) Image processing tools for dental applications. Dent Clin N Am 44:299–318

    CAS  PubMed  Google Scholar 

  44. van der Stelt PF (2000) Principles of digital imaging. Dent Clin N Am 44:237–249

    PubMed  Google Scholar 

  45. Hintze H, Wenzel A, Frydenberg M (2002) Accuracy of caries detection with four storage phosphor systems and E-speed radiographs. Dentomaxillofac Radiol 31:170–175

    Article  CAS  PubMed  Google Scholar 

  46. Khan EA, Tyndall DA, Ludlow JB, Caplan D (2005) Proximal caries detection: Sirona Sidexis versus Kodak Ektaspeed Plus. Gen Dent 53:43–48

    PubMed  Google Scholar 

  47. Haiter-Neto F, Casanova MS, Frydenberg M, Wenzel A (2009) Task-specific enhancement filters in storage phosphor images from the Vistascan system for detection of proximal caries lesions of known size. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 107:116–121

    Article  Google Scholar 

  48. Moystad A, Svanaes DB, van der Stelt PF, Gröndahl HG, Wenzel A, van Ginckel FC, Kullendorf B, Hintze H, Larheim TA (2003) Comparison of standard and task-specific enhancement of Digora storage phosphor images for approximal caries diagnosis. Dentomaxillofac Radiol 32:390–396

    Article  CAS  PubMed  Google Scholar 

  49. Pecoraro M, Azadivatan-le N, Janal M, Khocht A (2005) Comparison of observer reliability in assessing alveolar bone height on direct digital and conventional radiographs. Dentomaxillofac Radiol 34:279–284

    Article  PubMed  Google Scholar 

  50. Eickholz P, Hausmann E (2000) Accuracy of radiographic assessment of interproximal bone loss in intrabony defects using linear measurements. Eur J Oral Sci 108:70–73

    Article  CAS  PubMed  Google Scholar 

  51. Wolf B, von Bethlenfalvy E, Hassfeld S, Staehle HJ, Eickholz P (2001) Reliability of assessing interproximal bone loss by digital radiography: intrabony defects. J Clin Periodontol 28:869–878

    Article  CAS  PubMed  Google Scholar 

  52. Hörr T, Kim TS, Hassfeld S, Staehle HJ, Klein F, Eickholz P (2005) Accuracy of assessing infrabony defects using a special digital filter for periodontal bone loss. Am J Dent 18:50–56

    PubMed  Google Scholar 

  53. Lozano A, Forner L, Llena C (2002) In vitro comparison of root-canal measurements with conventional and digital radiology. Int Endod J 35:542–550

    Article  CAS  PubMed  Google Scholar 

  54. Friedlander LT, Love RM, Chandler NP (2002) A comparison of phosphor-plate digital images with conventional radiographs for the perceived clarity of fine endodontic files and periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 93:321–327

    Article  Google Scholar 

  55. Vandenberghe B, Bud M, Sutanto A, Jacobs R (2010) The use of high-resolution digital imaging technology for small diameter K-file length determination in endodontics. Clin Oral Invest 14:223–231

    Article  Google Scholar 

  56. Kal BI, Baksi BG, Dündar N, Sen BH (2007) Effect of various digital process algorithms on the measurement accuracy of endodontic file length. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 103:280–284

    Article  Google Scholar 

  57. Li G, Sanderink GC, Welander U, McDavid WD, Nasstrom K (2004) Evaluation of endodontic files in digital radiographs before and after employing three image processing algorithms. Dentomaxillofac Radiol 33:6–11

    Article  CAS  PubMed  Google Scholar 

  58. Yoshioka T, Kobayashi C, Suda H, Sasaki T (2002) An observation of the healing process of periapical lesions by digital subtraction radiography. J Endod 28:589–591

    Article  PubMed  Google Scholar 

  59. Matteson SR, Deahl ST, Alder ME, Nummikoski PV (1996) Advanced imaging methods. Crit Rev Oral Biol Med 7:346–395

    Article  CAS  PubMed  Google Scholar 

  60. Lehmann TM, Gröndahl HG, Benn DK (2000) Computer-based registration for digital subtraction in dental radiology. Dentomaxillofac Radiol 29:323–346

    Article  CAS  PubMed  Google Scholar 

  61. Zulqarnain BJ, Almas K (1998) Effect of x-ray beam vertical angulation on radiographic assessment of alveolar crest level. Indian J Dent Res 9:132–138

    CAS  PubMed  Google Scholar 

  62. Gijbels F, Sanderink G, Wyatt J, Van Dam J, Nowak B, Jacobs R (2004) Radiation doses of indirect and direct digital cephalometric radiography. Br Dent J 197:149–152

    Article  CAS  PubMed  Google Scholar 

  63. Visser H, Rödig T, Hermann KP (2001) Dose reduction by direct-digital cephalometric radiography. Angle Orthod 71:159–163

    CAS  PubMed  Google Scholar 

  64. Mazonakis M, Damilakis J, Raissaki M (2004) Radiation dose and cancer risk to children undergoing skull radiography. Pediatr Radiol 34:624–629

    Article  PubMed  Google Scholar 

  65. Farman AG, Farman TT (2000) Extraoral and panoramic systems. Dent Clin N Am 44:257–272

    CAS  PubMed  Google Scholar 

  66. Chadwick JW, Prentice RN, Major PW, Lam EW (2009) Image distortion and magnification of three digital CCD cephalometric systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 107:105–112

    Article  Google Scholar 

  67. Gijbels F, Sanderink G, Wyatt J, Van Dam J, Nowak B, Jacobs R (2003) Radiation doses of collimated vs non-collimated cephalometric exposures. Dentomaxillofac Radiol 32:128–133

    Article  CAS  PubMed  Google Scholar 

  68. Frederiksen NL (2004) Specialized radiographic techniques. In: White SC, Pharoah MJ (eds) Oral radiology. Principles and interpretation, 5th edn. Mosby, St. Louis, pp 245–464

    Google Scholar 

  69. Farman AG, Farman TT (2001) A comparison of image characteristics and convenience in panoramic radiography using charged-coupled device, storage phosphor and film receptors. J Digit Imaging 14:48–51

    Article  CAS  PubMed  Google Scholar 

  70. Angelopoulos C, Bedard A, Katz JO, Karamanis S, Parissis N (2004) Digital panoramic radiography: an overview. Semin Orthod 10:194–203

    Article  Google Scholar 

  71. Rushton VE, Horner K, Worthington HV (1999) The quality of panoramic radiographs in a sample of general dental practices. Br Dent J 186:630–633

    Article  CAS  PubMed  Google Scholar 

  72. Fuhrmann A, Schulze D, Rother U, Vesper M (2003) Digital transversal slice imaging in dento-maxillofacial radiology: from pantomography to digital volume tomography. Int J Comput Dent 6:129–140

    CAS  PubMed  Google Scholar 

  73. Farman TT, Farman AG, Kelly MS, Firriolo FJ, Yancey JM, Stewart AV (1998) Charge-coupled device panoramic radiography: effect of beam energy on radiation exposure. Dentomaxillofac Radiol 27:36–40

    Article  CAS  PubMed  Google Scholar 

  74. Gijbels F, Jacobs R, Bogaerts R, Debaveye D, Verlinden S, Sanderink G (2005) Dosimetry of digital panoramic imaging. Part I: Patient exposure. Dentomaxillofac Radiol 34:145–149

    Article  CAS  PubMed  Google Scholar 

  75. Gavala S, Donta C, Tsiklakis K, Boziari A, Kamenopoulou V, Stamatakis HC (2009) Radiation dose reduction in direct digital panoramic radiography. Eur J Radiol 71:42–48

    Article  PubMed  Google Scholar 

  76. Ludlow JB, Davies-Ludlow LE, Brooks SL (2003) Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac Radiol 32:229–234

    Article  CAS  PubMed  Google Scholar 

  77. Buzug TM (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  78. Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36:57–68

    Article  PubMed  Google Scholar 

  79. Gahleitner H, Watzek G, Imhof H (2003) Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws. Eur Radiol 13:366–367

    PubMed  Google Scholar 

  80. Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 30:1088–1095

    Article  CAS  PubMed  Google Scholar 

  81. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA (1998) A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 8:1558–1564

    Article  CAS  PubMed  Google Scholar 

  82. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K (1999) Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 28:245–248

    Article  CAS  PubMed  Google Scholar 

  83. Sukovic P (2003) Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 6:31–36

    Article  PubMed  Google Scholar 

  84. Kau CH, Bozic M, English J, Lee R, Bussa H, Ellis RK (2009) Cone-beam computed tomography of the maxillofacial region-an update. Int J Med Robot 5:366–380

    PubMed  Google Scholar 

  85. Dawood A, Patel S, Brown J (2009) Cone beam CT in dental practice. Br Dent J 207:23–28

    Article  CAS  PubMed  Google Scholar 

  86. Baba R, Konno Y, Ueda K, Ikeda S (2002) Comparison of flat-panel detector and image-intensifier detector for cone-beam CT. Comput Med Imaging Graph 26:153–158

    Article  PubMed  Google Scholar 

  87. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R (2009) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 71:461–468

    Article  CAS  PubMed  Google Scholar 

  88. Schulze D, Heiland M, Thurmann H, Adam G (2004) Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol 33:83–86

    Article  CAS  PubMed  Google Scholar 

  89. Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 106:106–114

    Article  Google Scholar 

  90. Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M (2009) Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol 38:367–378

    Article  CAS  PubMed  Google Scholar 

  91. Loubele M, Maes F, Jacobs R, van Steenberghe D, White SC, Suetens P (2008) Comparative study of image quality for MSCT and CBCT scanners for dentomaxillofacial radiology applications. Radiat Prot Dosim 129:222–226

    Article  CAS  Google Scholar 

  92. Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas L, Souza PC, Martens W, Shahbazian M, Alonso A, Lambrichts I (2009) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part I: on subjective image quality. Eur J Radiol. doi:10.1016/j.ejrad.2009.03.042

    Google Scholar 

  93. Hashimoto K, Kawashima S, Araki M, Iwai K, Sawada K, Akiyama Y (2006) Comparison of image performance between cone-beam computed tomography for dental use and four-row multidetector helical CT. J Oral Sci 48:27–34

    Article  PubMed  Google Scholar 

  94. Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, Lambrichts I, van Steenberghe D, Suetens P (2008) Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol 37:309–318

    Article  CAS  PubMed  Google Scholar 

  95. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB (2006) Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 35:219–226

    Article  CAS  PubMed  Google Scholar 

  96. Roberts JA, Drage NA, Davies J, Thomas DW (2009) Effective dose from cone beam CT examinations in dentistry. Br J Radiol 82:35–40

    Article  CAS  PubMed  Google Scholar 

  97. Hirsch E, Wolf U, Heinicke F, Silva MA (2008) Dosimetry of the cone beam computed tomography Veraview 3D compared with the Accuitomo in different fields of view. Dentomaxillofac Radiol 37:268–273

    Article  CAS  PubMed  Google Scholar 

  98. Kwong JC, Palomo JM, Landers MA, Figueroa A, Hans MG (2008) Image quality produced by different cone-beam computed tomography settings. Am J Orthod Dentofacial Orthop 133:317–327

    Article  PubMed  Google Scholar 

  99. Palomo JM, Rao PS, Hans MG (2008) Influence of CBCT exposure conditions on radiation dose. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 105:773–782

    Article  Google Scholar 

  100. Loubele M, Maes F, Schutyser F, Marchal G, Jacobs R, Suetens P (2006) Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 102:225–234

    Article  Google Scholar 

  101. Liang X, Lambrichts I, Sun Y, Denis K, Hassan B, Li L, Pauwels R, Jacobs R (2009) A comparative evaluation of cone beam computed tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy. Eur J Radiol, Epub May 5 http://dx.doi.org/10.1016/j.ejrad.2009.03.042

  102. Loubele M, Van Assche N, Carpentier K, Maes F, Jacobs R, van Steenberghe D, Suetens P (2008) Comparative localized linear accuracy of small-field cone-beam CT and multislice CT for alveolar bone measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 105:512–518

    Article  CAS  Google Scholar 

  103. Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J (2008) Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol 37:10–17

    Article  CAS  PubMed  Google Scholar 

  104. Van Bogaert P, Willem D, Liang X, Pauwels R, Pattijn V, Dhoore E, Jacobs R (2009) A comparative evaluation of CBCT vs MSCT for jaw bone model accuracy. Programme and abstract book of the 17th International Congress of Dentomaxillofacial Radiology, p 120

  105. Hassan B, Couto Souza P, Jacobs R, de Azambuja BS, van der Stelt P (2009) Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Invest. doi:10.1007/s00784-009-0291-3, Epub June 19

    Google Scholar 

  106. Shintaku WH, Venturin JS, Azevedo B, Noujeim M (2009) Applications of cone-beam computed tomography in fractures of the maxillofacial complex. Dent Traumatol 25:358–366

    Article  PubMed  Google Scholar 

  107. Farman AG, Scarfe WC (2006) Development of imaging selection criteria and procedures should precede cephalometric assessment with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 130:257–265

    Article  PubMed  Google Scholar 

  108. van Vlijmen OJ, Bergé SJ, Swennen GR, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM (2009) Comparison of cephalometric radiographs obtained from cone-beam computed tomography scans and conventional radiographs. J Oral Maxillofac Surg 67:92–97

    Article  PubMed  Google Scholar 

  109. Kumar V, Ludlow J, Soares Cevidanes LH, Mol A (2009) In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod 78:873–879

    Article  Google Scholar 

  110. Cattaneo PM, Bloch CB, Calmar D, Hjortshøi M, Melsen B (2008) Comparison between conventional and cone-beam computed tomography-generated cephalograms. Am J Orthod Dentofacial Orthop 134:798–802

    Article  PubMed  Google Scholar 

  111. Moshiri M, Scarfe WC, Hilgers ML, Sheetz JP, Silveira AM, Farman AG (2007) Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am J Orthod Dentofacial Orthop 132:550–560

    Article  PubMed  Google Scholar 

  112. Ludlow JB, Gubler M, Cevidanes M, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop 136(312):e1–e10

    PubMed  Google Scholar 

  113. Hassan B, van der Stelt P, Sanderink G (2009) Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod 31:129–134

    Article  PubMed  Google Scholar 

  114. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG (2008) Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78:387–395

    Article  PubMed  Google Scholar 

  115. Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farmn AG (2009) Linear accuracy of cone beam CT derived 3D images. Angle Orthod 79:150–157

    Article  PubMed  Google Scholar 

  116. de Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D (2009) Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 107:256–265

    Article  Google Scholar 

  117. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S (2009) Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol 38:262–273

    Article  CAS  PubMed  Google Scholar 

  118. Madden RP, Hodges JS, Salmen CW, Rindal DB, Tunio J, Michalowicz BS, Ahmad M (2007) Utility of panoramic radiographs in detecting cervical calcified carotid atheroma. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 103:543–548

    Article  Google Scholar 

  119. Khosropanah SH, Shahidi SH, Bronoosh P, Rasekhi K (2009) Evaluation of carotid calcification detected using panoramic radiography and carotid Doppler sonography in patients with and without coronary heart disease. Br Dent J 207:162–163

    Article  Google Scholar 

  120. Griniatsos J, Damaskos S, Tsekouras N, Klonaris C, Georgopoulos S (2009) Correlation of calcified carotid plaques detected by panoramic radiograph with risk factors for stroke development. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 108:600–603

    Article  Google Scholar 

  121. Bayram B, Uckan S, Acikgoz A, Müderrisoqlu H, Aydinalp A (2006) Digital panoramic radiography: a reliable method to diagnose carotid artery atheromas? Dentomaxillofac Radiol 35:266–270

    Article  CAS  PubMed  Google Scholar 

  122. Friedlander AH, Freymiller EG (2003) Detection of radiation-accelerated atherosclerosis of the carotid artery by panoramic radiography. A new opportunity for dentists. J Am Dent Assoc 134:1361–1365

    PubMed  Google Scholar 

  123. Molander B (1996) Panoramic radiography in dental diagnostics. Swed Dent J Suppl 119:1–26

    CAS  PubMed  Google Scholar 

  124. Harris D, Buser D, Dula K, Gröndahl K, Jacobs R, Lekholm U, Nakielny R, van Steenberghe D, van der Stelt P (2002) E.A.O. guidelines for the use of diagnostic imaging in implant dentistry. Clin Oral Implants Res 13:566–570

    Article  PubMed  Google Scholar 

  125. Dreiseidler T, Mischkowski RA, Neugebauer J, Ritter L, Zöller JE (2009) Comparison of cone-beam imaging with orthopantomography and computerized tomography for assessment in presurgical implant dentistry. Int J Oral Maxillofac Implants 24:216–225

    PubMed  Google Scholar 

  126. Brooks SL, Brand JW, Gibbs SJ, Hollender L, Lurie AG, Omnell KA, Westesson PL, White SC (1997) Imaging of the temporomandibular joint: a position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 83:609–618

    Article  CAS  Google Scholar 

  127. Katakami K, Shimoda S, Kobayashi K, Kawasaki K (2008) Histological investigation of osseous changes of mandibular condyles with backscattered electron images. Dentomaxillofac Radiol 37:330–339

    Article  CAS  PubMed  Google Scholar 

  128. Honda K, Larheim TA, Maruhashi K, Matsumoto K, Iwai K (2006) Osseous abnormalities of the mandibular condyle: diagnostic reliability of cone beam computed tomography compared with helical computed tomography based on an autopsy material. Dentomaxillofac Radiol 35:152–157

    Article  CAS  PubMed  Google Scholar 

  129. Honey OB, Scarfe WC, Hilgers MJ, Klueber K, Silveira AM, Haskell BS, Farman AG (2007) Accuracy of cone-beam computed tomography imaging of the temporomandibular joint: comparisons with panoramic radiology and linear tomography. Am J Orthod Dentofacial Orthop 132:429–438

    Article  PubMed  Google Scholar 

  130. Meng JH, Zhang WL, Liu DG, Zhao YP, Ma XC (2007) Diagnostic evaluation of the temporomandibular joint osteoarthritis using cone beam computed tomography compared with conventional radiographic technology. Beijing Da Xue Xue Bao 39:26–29

    PubMed  Google Scholar 

  131. Alexiou K, Stamatakis H, Tsiklakis K (2009) Evaluation of the severity of temporomandibular joint osteoarthritic changes related to age using cone beam computed tomography. Dentomaxillofac Radiol 38:141–147

    Article  PubMed  Google Scholar 

  132. Honda K, Bjørmland T (2006) Image-guided puncture technique for the superior temporomandibular joint space: value of cone beam computed tomography (CBCT). Oral Surg Oral Med Oral Pathol Oral Radiol Endo 102:281–286

    Article  Google Scholar 

  133. Misch KA, Yi ES, Sarment DP (2006) Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol 77:1261–1266

    Article  PubMed  Google Scholar 

  134. Vandenberghe B, Jacobs R, Yang J (2008) Detection of periodontal bone loss using digital intra-oral and CBCT images: an in-vitro assessment of bony and/or infrabony defects. Dentomaxillofac Radiol 37:252–260

    Article  CAS  PubMed  Google Scholar 

  135. Mol A, Balusundaram A (2008) In vitro cone beam computed tomography imaging of periodontal bone. Dentomaxillofac Radiol 37:319–324

    Article  CAS  PubMed  Google Scholar 

  136. Noujeim M, Prihoda T, Langlais R, Nummikoski P (2009) Evaluation of high-resolution cone beam computed tomography in the detection of simulated interradicular bone lesions. Dentomaxillofac Radiol 38:156–162

    Article  CAS  PubMed  Google Scholar 

  137. Walter C, Kaner D, Berndt DC, Weiger R, Zitzmann NU (2009) Three-dimensional imaging as a pre-operative tool in decision making for furcation surgery. J Clin Periodontol 36:250–257

    Article  PubMed  Google Scholar 

  138. Grimard BA, Hoidal MJ, Mills MP, Mellonig JT, Nummikoski PV, Mealey BL (2009) Comparison of clinical, periapical radiograph, and cone-beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy. J Periodontol 80:48–55

    Article  PubMed  Google Scholar 

  139. Müller HP, Eger T, Lange DE (1995) Management of furcation-involved teeth. A retrospective analysis. J Clin Periodontol 22:911–917

    Article  PubMed  Google Scholar 

  140. Estrela C, Bueno MR, Leles CR, Azevedo B, Azevedo JR (2008) Accuracy of cone beam computed tomography and panoramic and periapical radiography for detection of apical periodontitis. J Endod 34:273–279

    Article  PubMed  Google Scholar 

  141. de Paula-Silva FW, Wu MK, Leonarda MR, da Silva LA, Wesselink PR (2009) Accuracy of periapical radiography and cone-beam computed tomography scans in diagnosing apical periodontitis using histopathological findings as gold standard. J Endod 35:1009–1012

    Article  PubMed  Google Scholar 

  142. Low KM, Dula K, Bürgin W, von Arx T (2008) Comparison of periapical radiography and limited cone-beam tomography in posterior maxillary teeth referred for apical surgery. J Endod 34:557–562

    Article  PubMed  Google Scholar 

  143. Moura MS, Guedes OA, De Alencar AH, Azevedo BC, Estrela C (2009) Influence of length of root canal obturation on apical periodontitis detected by periapical radiography and cone beam computed tomography. J Endod 35:805–809

    Article  PubMed  Google Scholar 

  144. Bernardes RA, de Moraes IG, Húngaro Duarte MA, Azevedo BC, de Azevedo JR, Bramante CM (2009) Use of cone-beam volumetric tomography in the diagnosis of root fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 108:270–277

    Article  Google Scholar 

  145. Iikubo M, Kobayashi K, Mishima A, Shimoda S, Daimaruya T, Igarashi C, Imanaka M, Yuasa M, Sakamoto M, Sasano T (2009) Accuracy of intraoral radiography, multidetector helical CT and limited cone-beam CT for the detection of horizontal tooth root fracture. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 108:e70–e74

    Article  Google Scholar 

  146. Patel S, Dawood A, Wilson R, Horner K, Mannocci F (2009) The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography—an in vivo investigation. Int Endod J 42:831–838

    Article  CAS  PubMed  Google Scholar 

  147. Neugebauer J, Ritter L, Mischkowski RA, Dreiseidler T, Schrerer P, Ketterle M, Rothamel D, Zoller JE (2010) Evaluation of maxillary sinus anatomy by cone-beam CT prior to sinus floor elevation. Int J Oral Maxillofac Implants 25:258–265

    PubMed  Google Scholar 

  148. Zoumalan RA, Lebowitz RA, Wang E, Yung K, Babb JS, Jacobs JB (2009) Flat panel cone beam computed tomography of the sinuses. Otolaryngol Head Neck Surg 140:841–844

    Article  PubMed  Google Scholar 

  149. Young S, Lee J, Hodges R, Chang TL, Elashoff D, White S (2009) A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries. Dentomaxillofac Radiol 38:445–451

    Article  CAS  PubMed  Google Scholar 

  150. Akdeniz BG, Gröndahl HG, Magnusson B (2006) Accuracy of proximal caries depth measurements: comparison between limited cone beam computed tomography, storage phosphor and film radiography. Caries Res 40:202–207

    Article  PubMed  Google Scholar 

  151. Tsuchida R, Araki K, Okano T (2007) Evaluation of a limited cone-beam volumetric imaging system: comparison with film radiography in detecting incipient proximal caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 104:412–416

    Article  Google Scholar 

  152. De Vos W, Casselman J, Swennen GRJ (2009) Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 38:609–625

    Article  PubMed  Google Scholar 

  153. Horner K, Islam M, Flygare L, Tsiklakis K, Whaites E (2009) Basic principles for use of dental cone beam computed tomography: consensus guidelines of the European Academy of Dental and Maxillofacial Radiology. Dentomaxillofac Radiol 38:187–195

    Article  CAS  PubMed  Google Scholar 

  154. SedentextCT Project (2009) Radiation protection: cone beam CT for dental and maxillofacial radiology. Provisional guidelines. Available for download at http://www.sedentexct.eu/guidelines. Accessed 14 Oct 2009

  155. Carter L, Farman AG, Geist J, Scarfe WC, Angelopoulos C, Nair MK, Hildebolt CF, Tyndall D, Shrout M, Academy A, American Academyof Oral and Maxillofacial Radiology (2008) American Academy of Oral and Maxillofacial Radiology executive opinion statement on performing and interpreting diagnostic cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 106:561–562

    Article  Google Scholar 

  156. Cha JY, Mah J, Sinclair P (2007) Incidental findings in the maxillofacial area with 3-dimensional cone-beam imaging. Am J Orthod Dentofac Orthop 132:7–14

    Article  Google Scholar 

  157. Nair MK, Pettigrew JC Jr, Mancuso AA (2007) Intracranial aneurysm, as an incidental finding. Dentomaxillofac Radiol 36:107–112

    Article  CAS  PubMed  Google Scholar 

  158. Schulze D, Blessmann M, Pohlenz P, Wagner KW, Heiland M (2006) Diagnostic criteria for the detection of mandibular osteomyelitis using cone-beam computed tomography. Dentomaxillofac Radiol 35:232–235

    Article  CAS  PubMed  Google Scholar 

  159. Fullmer JM, Scarfe WC, Kushner GM, Alpert B, Farman AG (2007) Cone beam computed tomographic findings in refractory chronic suppurative osteomyelitis of the mandible. Br J Oral Maxillofac Surg 45:364–371

    Article  PubMed  Google Scholar 

  160. Simon JH, Enciso R, Malfaz JM, Roges R, Bailey-Perry M, Patel A (2006) Differential diagnosis of large periapical lesions using cone-beam computed tomography measurements and biopsy. J Endod 32:833–837

    Article  PubMed  Google Scholar 

  161. Singer SR, Mupparapu M, Philipone E (2009) Cone beam computed tomography findings in a case of plexiform ameloblastoma. Quintessence Int 40:727–630

    Google Scholar 

  162. Isler SC, Demircan S, Soluk M, Cebi Z (2009) Radiologic evaluation of an unusually sized complex odontoma involving the maxillary sinus by cone beam computed tomography. Quintessence Int 40:533–535

    PubMed  Google Scholar 

  163. Kamel SG, Kau CH, Wong ME, Kennedy JW, English JD (2009) The role of cone beam CT in the evaluation and management of a family with Gardner's syndrome. J Craniomaxillofac Surg 37:461–468

    PubMed  Google Scholar 

  164. Araki M, Komeoka S, Mastumoto N, Komiyama K (2007) Usefulness of cone beam computed tomography for odontogenic myxoma. Dentomaxillofac Radiol 36:423–427

    Article  CAS  PubMed  Google Scholar 

  165. Momin MA, Okochi K, Watanabe H, Imaizumi A, Omura K, Amagasa T, Okada N, Ohbayashi N, Kurabayashi T (2009) Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: comparison with conventional panoramic radiography. Eur J Radiol 72:75–81

    Article  PubMed  Google Scholar 

  166. Barragan-Adjemian C, Lausten L, Ang DB, Johnson M, Katz J, Bonewald LF (2009) Bisphosphonates-related osteonecrosis of the jaw: model and diagnosis with cone-beam computerized tomography. Cell Tissues Organs 189:284–288

    Article  CAS  Google Scholar 

  167. Shi H, Scarfe WC, Farman AG (2007) Three-dimensional reconstruction of individual cervical vertebrae from cone-beam computed-tomography images. Am J Orthod Dentofac Orthop 131:426–432

    Article  Google Scholar 

  168. Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW (2009) Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 30:299–303

    Article  PubMed  Google Scholar 

  169. Januario AL, Barriviera M, Duarte WR (2008) Soft tissue cone-beam computed tomography: a novel method for the measurement of gingival tissue and the dimensions of the dentogingival unit. J Esthet Restor Dent 20:366–373

    Article  PubMed  Google Scholar 

  170. Nkenke E, Vairaktaris E, Neukam FW, Schlegel A, Stamminger M (2007) State of the art of fusion of computed tomography data and optical 3D images. Int J Comput Dent 10:11–24

    CAS  PubMed  Google Scholar 

  171. Verstreken K, Van Cleynenbreugel J, Marchal G, Naert I, Suetens P, van Steenberghe D (1996) Computer-assisted planning of oral implant surgery: a three-dimensional approach. Int J Oral Maxillofac Implants 11:806–810

    CAS  PubMed  Google Scholar 

  172. Jacobs R, Adriansens A, Verstreken K, Suetens P, van Steenberghe D (1999) Predictability of a three-dimensional planning system for oral implant surgery. Dentomaxillofac Radiol 28:105–111

    Article  CAS  PubMed  Google Scholar 

  173. Valente F, Schiroli G, Sbrenna A (2009) Accuracy of computer-aided implant surgery: a clinical and radiographic study. Int J Oral Maxillofac Implants 24:234–242

    PubMed  Google Scholar 

  174. Ersoy AE, Turkyilmaz I, Ozan O, McGlumphy EA (2008) Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants. J Periodontol 79:1339–1345

    Article  PubMed  Google Scholar 

  175. van Steenberghe D, Glauser R, Blömback U, Andersson M, Schutyser F, Pettersson A, Wendelhag I (2003) A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Implant Dent Relat Res 7:S111–S120

    Article  Google Scholar 

  176. Sarment D, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18:571–577

    PubMed  Google Scholar 

  177. Van Assche N, van Steenberghe D, Guerrero ME, Hirsch E, Schutyser F, Quirynen M, Jacobs R (2005) Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. J Clin Periodontol 34:816–821

    Article  Google Scholar 

  178. Chen X, Yuan J, Wang C, Huang Y, Kang L (2009) Modular preoperative planning software for computer-aided implantology and the application of a novel stereolithographic template: a pilot study. Clin Implant Dent Relat Res, Epub May 7. doi: 10.1111/j.1708-8208.2009.00160.x

  179. van der Zel JM (2008) Implant planning and placement using optical scanning and cone beam CT technology. J Prosthodont 17:476–481

    Article  PubMed  Google Scholar 

  180. Tahmaseb A, De Clerck R, Wismeijer D (2009) Computer-guided implant placement: 3D planning software, fixed intraoral reference points and CAD/CAM technology. A case report. Int J Oral Maxillofac Implants 24:541–546

    PubMed  Google Scholar 

  181. Swennen GR, Mollemans W, De Clercq C, Abeloos J, Lamoral P, Lippens F, Neyt N, Casselman J, Schutyser F (2009) A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognatic surgery planning. J Craniofac Surg 20:297–307

    Article  PubMed  Google Scholar 

  182. Maal TJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FA, Bergé SJ (2008) The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 37:641–646

    Article  CAS  PubMed  Google Scholar 

  183. Eggers G, Senoo H, Kane G, Mühling J (2009) The accuracy of image guided surgery based on cone beam computer tomography image data. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:e41–e48

    Article  PubMed  Google Scholar 

  184. Feichtinger M, Mossböck R, Kärcher H (2007) Assessment of bone resorption after secondary alveolar bone grafting using three-dimensional computed tomography: a three-year study. Cleft Palate Craniofac J 44:142–148

    Article  PubMed  Google Scholar 

  185. Johansson B, Grepe A, Wannfors K, Aberg P, Hirsch JM (2001) A clinical study of changes in the volume of bone grafts in the atrophic maxilla. Dentomaxillofac Radiol 30:157–161

    Article  CAS  PubMed  Google Scholar 

  186. Agbaje JO, Jacobs R, Michiels K, Abu-Ta'a M, van Steenberghe D (2009) Bone healing after dental extractions in irradiated patients: a pilot study on a novel technique for volume assessment of healing tooth sockets. Clin Oral Investig 13:257–261

    Article  PubMed  Google Scholar 

  187. Vandenberghe B, Hassan B, Armellini D, Maes F, Jacobs, R (2009) Volumetric quantification of bone loss for determination of bone grafting accuracy: a pilot study. Programme and abstract book of the 17th International Congress of Dentomaxillofacial Radiology 2009, p 59

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenberghe, B., Jacobs, R. & Bosmans, H. Modern dental imaging: a review of the current technology and clinical applications in dental practice. Eur Radiol 20, 2637–2655 (2010). https://doi.org/10.1007/s00330-010-1836-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1836-1

Keywords

Navigation