Skip to main content

Advertisement

Log in

Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Libert C, Dejager L, Pinheiro I (2010) The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 10(8):594–604

    Article  CAS  PubMed  Google Scholar 

  2. Markle JG, Fish EN (2014) SeXX matters in immunity. Trends Immunol 35(3):97–104

    Article  CAS  PubMed  Google Scholar 

  3. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638

    Article  CAS  PubMed  Google Scholar 

  4. Laffont S, Garnier L, Lelu K, Guery JC (2015) Estrogen-mediated protection of experimental autoimmune encephalomyelitis: lessons from the dissection of estrogen receptor-signaling in vivo. Biom J 38(3):194–205

    Google Scholar 

  5. Laffont S, Seillet C, Guery JC (2017) Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol 8:108

    PubMed  PubMed Central  Google Scholar 

  6. Laffont S, Blanquart E, Guery JC (2017) Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol 8:1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12(6):429–442

    Article  CAS  PubMed  Google Scholar 

  8. Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol 463:297–308

    Article  CAS  PubMed  Google Scholar 

  9. Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8(9):737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434(7031):400–404

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC (2016) Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci U S A 113(14):E2029–E2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski C, Chaumeil J, Mejia JE, Guery JC (2018) TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 3(19):eaap8855

    Article  PubMed  Google Scholar 

  13. Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358

    Article  CAS  PubMed  Google Scholar 

  14. McDonald G, Cabal N, Vannier A, Umiker B, Yin RH, Orjalo AV Jr, Johansson HE, Han JH, Imanishi-Kari T (2015) Female bias in systemic lupus erythematosus is associated with the differential expression of X-linked Toll-like receptor 8. Front Immunol 6:457

    PubMed  PubMed Central  Google Scholar 

  15. Savarese F, Flahndorfer K, Jaenisch R, Busslinger M, Wutz A (2006) Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 26(19):7167–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Syrett CM, Sindhava V, Hodawadekar S, Myles A, Liang G, Zhang Y, Nandi S, Cancro M, Atchison M, Anguera MC (2017) Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet 13(10):e1007050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qu K, Zaba LC, Giresi PG, Li R, Longmire M, Kim YH, Greenleaf WJ, Chang HY (2015) Individuality and variation of personal regulomes in primary human T cells. Cell Syst 1(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat Immunol 18(7):716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green NM, Marshak-Rothstein A (2011) Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 23(2):106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 103(26):9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312(5780):1669–1672

    Article  CAS  PubMed  Google Scholar 

  22. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S (2007) Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27(5):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petri M, Orbai AM, Alarcón Graciela S, Gordon C, Merrill Joan T, Fortin Paul R, Bruce Ian N, Isenberg D, Wallace Daniel J, Nived O, Sturfelt G, Ramsey-Goldman R, Bae SC, Hanly John G, Sánchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth Victoria P, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta Munther A, Jacobsen S, Buyon Jill P, Maddison P, Dooley Mary A, van Vollenhoven Ronald F, Ginzler E, Stoll T, Peschken C, Jorizzo Joseph L, Callen Jeffrey P, Lim SS, Fessler Barri J, Inanc M, Kamen Diane L, Rahman A, Steinsson K, Franks Andrew G, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman Michael H, McGwin G, Magder Laurence S (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hua J, Kirou K, Lee C, Crow MK (2006) Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum 54(6):1906–1916

    Article  CAS  PubMed  Google Scholar 

  25. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301(1):5–8

    Article  CAS  PubMed  Google Scholar 

  26. Ytterberg SR, Schnitzer TJ (1982) Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum 25(4):401–406

    Article  CAS  PubMed  Google Scholar 

  27. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MG, Ly N, Woodward RN, Fry KE, Lau AY, Prentice JG, Wohlgemuth JG, Crow MK (2004) Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum 50(12):3958–3967

    Article  CAS  PubMed  Google Scholar 

  30. Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606

    Article  CAS  PubMed  Google Scholar 

  31. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294(5546):1540–1543

    Article  CAS  PubMed  Google Scholar 

  32. Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6(11):823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15(8):471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25(3):383–392

    Article  CAS  PubMed  Google Scholar 

  35. Simchoni N, Cunningham-Rundles C (2015) TLR7- and TLR9-responsive human B cells share phenotypic and genetic characteristics. J Immunol 194(7):3035–3044

    Article  CAS  PubMed  Google Scholar 

  36. Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C, Bhangale T, Graham RR, Ortmann W, Criswell LA, Yeo GW, Behrens TW (2015) The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350(6259):455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Green NM, Laws A, Kiefer K, Busconi L, Kim YM, Brinkmann MM, Trail EH, Yasuda K, Christensen SR, Shlomchik MJ, Vogel S, Connor JH, Ploegh H, Eilat D, Rifkin IR, van Seventer JM, Marshak-Rothstein A (2009) Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. J Immunol 183(3):1569–1576

    Article  CAS  PubMed  Google Scholar 

  38. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A (2012) Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 12(4):282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fairhurst AM, Hwang SH, Wang A, Tian XH, Boudreaux C, Zhou XJ, Casco J, Li QZ, Connolly JE, Wakeland EK (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santiago-Raber ML, Kikuchi S, Borel P, Uematsu S, Akira S, Kotzin BL, Izui S (2008) Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol 181(2):1556–1562

    Article  CAS  PubMed  Google Scholar 

  41. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25(3):417–428

    Article  CAS  PubMed  Google Scholar 

  42. Walsh ER, Pisitkun P, Voynova E, Deane JA, Scott BL, Caspi RR, Bolland S (2012) Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc Natl Acad Sci U S A 109(40):16276–16281

    Article  PubMed  PubMed Central  Google Scholar 

  43. Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L, Griffith TS, Vezys V, Barber DL, Masopust D (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9(1):209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jackson SW, Scharping NE, Kolhatkar NS, Khim S, Schwartz MA, Li QZ, Hudkins KL, Alpers CE, Liggitt D, Rawlings DJ (2014) Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J Immunol 192(10):4525–4532

    Article  CAS  PubMed  Google Scholar 

  45. Soni C, Wong EB, Domeier PP, Khan TN, Satoh T, Akira S, Rahman ZS (2014) B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J Immunol 193(9):4400–4414

    Article  CAS  PubMed  Google Scholar 

  46. Ronnblom L (2011) The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups J Med Sci 116(4):227–237

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rowland SL, Riggs JM, Gilfillan S, Bugatti M, Vermi W, Kolbeck R, Unanue ER, Sanjuan MA, Colonna M (2014) Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J Exp Med 211(10):1977–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sisirak V, Ganguly D, Lewis KL, Couillault C, Tanaka L, Bolland S, D'Agati V, Elkon KB, Reizis B (2014) Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J Exp Med 211(10):1969–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19

    Article  PubMed  PubMed Central  Google Scholar 

  51. Craft JE (2011) Dissecting the immune cell mayhem that drives lupus pathogenesis. Sci Transl Med 3(73):73ps9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jacquemin C, Schmitt N, Contin-Bordes C, Liu Y, Narayanan P, Seneschal J, Maurouard T, Dougall D, Davizon ES, Dumortier H, Douchet I, Raffray L, Richez C, Lazaro E, Duffau P, Truchetet ME, Khoryati L, Mercie P, Couzi L, Merville P, Schaeverbeke T, Viallard JF, Pellegrin JL, Moreau JF, Muller S, Zurawski S, Coffman RL, Pascual V, Ueno H, Blanco P (2015) OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42(6):1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438(7066):364–368

    Article  CAS  PubMed  Google Scholar 

  54. Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36(4):810–816

    Article  CAS  PubMed  Google Scholar 

  55. Hwang IY, Park C, Harrison K, Kehrl JH (2009) TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones. J Exp Med 206(12):2641–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298(5601):2199–2202

    Article  CAS  PubMed  Google Scholar 

  57. Browne EP (2011) Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog 7(10):e1002293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DeFranco AL, Rookhuizen DC, Hou B (2012) Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunol Rev 247(1):64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mankan AK, Hornung V (2012) Retroviral danger from within: TLR7 is in control. Immunity 37(5):763–766

    Article  CAS  PubMed  Google Scholar 

  60. Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L, Lee LM, Coffman RL, Bachmann MF, DeFranco AL (2011) Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34(3):375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, Christensen SR, Shlomchik MJ, Viglianti GA, Rifkin IR, Marshak-Rothstein A (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202(9):1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwang SH, Lee H, Yamamoto M, Jones LA, Dayalan J, Hopkins R, Zhou XJ, Yarovinsky F, Connolly JE, Curotto de Lafaille MA, Wakeland EK, Fairhurst AM (2012) B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J Immunol 189(12):5786–5796

    Article  CAS  PubMed  Google Scholar 

  63. Pinheiro I, Dejager L, Libert C (2011) X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 33(11):791–802

    Article  CAS  PubMed  Google Scholar 

  64. Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M, Reveille JD, Alarcon GS, Vila LM, Reid J, Harris B, Li S, Kelly JA, Harley JB (2008) Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum 58(8):2511–2517

    Article  PubMed  PubMed Central  Google Scholar 

  65. Harris VM, Sharma R, Cavett J, Kurien BT, Liu K, Koelsch KA, Rasmussen A, Radfar L, Lewis D, Stone DU, Kaufman CE, Li S, Segal B, Wallace DJ, Weisman MH, Venuturupalli S, Kelly JA, Alarcon-Riquelme ME, Pons-Estel B, Jonsson R, Lu X, Gottenberg JE, Anaya JM, Cunninghame-Graham DS, Huang AJW, Brennan MT, Hughes P, Alevizos I, Miceli-Richard C, Keystone EC, Bykerk VP, Hirschfield G, Xie G, Ng WF, Nordmark G, Bucher SM, Eriksson P, Omdal R, Rhodus NL, Rischmueller M, Rohrer M, Wahren-Herlenius M, Witte T, Mariette X, Lessard CJ, Harley JB, Sivils KL, Scofield RH (2016) Klinefelter’s syndrome (47,XXY) is in excess among men with Sjögren’s syndrome. Clin. Immunol 168:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seminog OO, Seminog AB, Yeates D, Goldacre MJ (2015) Associations between Klinefelter’s syndrome and autoimmune diseases: English national record linkage studies. Autoimmunity 48(2):125–128

    Article  CAS  PubMed  Google Scholar 

  67. Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2(9):777–780

    Article  CAS  PubMed  Google Scholar 

  68. Liu K, Kurien BT, Zimmerman SL, Kaufman KM, Taft DH, Kottyan LC, Lazaro S, Weaver CA, Ice JA, Adler AJ, Chodosh J, Radfar L, Rasmussen A, Stone DU, Lewis DM, Li S, Koelsch KA, Igoe A, Talsania M, Kumar J, Maier-Moore JS, Harris VM, Gopalakrishnan R, Jonsson R, Lessard JA, Lu X, Gottenberg JE, Anaya JM, Cunninghame-Graham DS, Huang AJW, Brennan MT, Hughes P, Illei GG, Miceli-Richard C, Keystone EC, Bykerk VP, Hirschfield G, Xie G, Ng WF, Nordmark G, Eriksson P, Omdal R, Rhodus NL, Rischmueller M, Rohrer M, Segal BM, Vyse TJ, Wahren-Herlenius M, Witte T, Pons-Estel B, Alarcon-Riquelme ME, Guthridge JM, James JA, Lessard CJ, Kelly JA, Thompson SD, Gaffney PM, Montgomery CG, Edberg JC, Kimberly RP, Alarcon GS, Langefeld CL, Gilkeson GS, Kamen DL, Tsao BP, McCune WJ, Salmon JE, Merrill JT, Weisman MH, Wallace DJ, Utset TO, Bottinger EP, Amos CI, Siminovitch KA, Mariette X, Sivils KL, Harley JB, Scofield RH (2016) X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheumatol 68(5):1290–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bai J, Qiao J, Wu Y, Zhao Z, Fang H (2015) Systemic lupus erythematosus in a patient with Turner syndrome. An Bras Dermatol 90(4):600–601

    Article  PubMed  PubMed Central  Google Scholar 

  70. Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK, Arnold AP, Singh RR, Voskuhl RR (2008) A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med 205(5):1099–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arnold AP, Burgoyne PS (2004) Are XX and XY brain cells intrinsically different? Trends Endocrinol Metab 15(1):6–11

    Article  CAS  PubMed  Google Scholar 

  72. Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR (2012) The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann Rheum Dis 71(8):1418–1422

    Article  CAS  PubMed  Google Scholar 

  73. Teuscher C, Noubade R, Spach K, McElvany B, Bunn JY, Fillmore PD, Zachary JF, Blankenhorn EP (2006) Evidence that the Y chromosome influences autoimmune disease in male and female mice. Proc Natl Acad Sci U S A 103(21):8024–8029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spach KM, Blake M, Bunn JY, McElvany B, Noubade R, Blankenhorn EP, Teuscher C (2009) Cutting edge: the Y chromosome controls the age-dependent experimental allergic encephalomyelitis sexual dimorphism in SJL/J mice. J Immunol 182(4):1789–1793

    Article  CAS  PubMed  Google Scholar 

  75. Case LK, Wall EH, Dragon JA, Saligrama N, Krementsov DN, Moussawi M, Zachary JF, Huber SA, Blankenhorn EP, Teuscher C (2013) The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res 23(9):1474–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Charchar FJ, Bloomer LDS, Barnes TA, Cowley MJ, Nelson CP, Wang Y, Denniff M, Debiec R, Christofidou P, Nankervis S, Dominiczak AF, Bani-Mustafa A, Balmforth AJ, Hall AS, Erdmann J, Cambien F, Deloukas P, Hengstenberg C, Packard C, Schunkert H, Ouwehand WH, Ford I, Goodall AH, Jobling MA, Samani NJ, Tomaszewski M (2012) Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet 379(9819):915–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Du S, Itoh N, Askarinam S, Hill H, Arnold AP, Voskuhl RR (2014) XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 111(7):2806–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laffont S, Rouquie N, Azar P, Seillet C, Plumas J, Aspord C, Guery JC (2014) X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J Immunol 193(11):5444–5452

    Article  CAS  PubMed  Google Scholar 

  79. Berghofer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H (2006) TLR7 ligands induce higher IFN-alpha production in females. J Immunol 177(4):2088–2096

    Article  PubMed  Google Scholar 

  80. Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, Wen TF, Lindsay RJ, Orellana L, Mildvan D, Bazner S, Streeck H, Alter G, Lifson JD, Carrington M, Bosch RJ, Robbins GK, Altfeld M (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15(8):955–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Seillet C, Laffont S, Tremollieres F, Rouquie N, Ribot C, Arnal JF, Douin-Echinard V, Gourdy P, Guery JC (2012) The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119(2):454–464

    Article  CAS  PubMed  Google Scholar 

  82. Seillet C, Rouquie N, Foulon E, Douin-Echinard V, Krust A, Chambon P, Arnal JF, Guery JC, Laffont S (2013) Estradiol promotes functional responses in inflammatory and steady-state dendritic cells through differential requirement for activation function-1 of estrogen receptor alpha. J Immunol 190(11):5459–5470

    Article  CAS  PubMed  Google Scholar 

  83. Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomezsko P, Sharei A, Kourjian G, Porichis F, Hart M, Palmer CD, Sirignano M, Beisel C, Hildebrandt H, Cenac C, Villani AC, Diefenbach TJ, Le Gall S, Schwartz O, Herbeuval JP, Autran B, Guery JC, Chang JJ, Altfeld M (2015) Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. J Immunol 195(11):5327–5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fink AL, Klein SL (2018) The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Current Opinion in Physiology 6:16–20

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH (2010) A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol 47(5):1083–1090

    Article  CAS  PubMed  Google Scholar 

  86. Forsbach A, Nemorin JG, Montino C, Muller C, Samulowitz U, Vicari AP, Jurk M, Mutwiri GK, Krieg AM, Lipford GB, Vollmer J (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180(6):3729–3738

    Article  CAS  PubMed  Google Scholar 

  87. Shimizu T (2017) Structural insights into ligand recognition and regulation of nucleic acid-sensing Toll-like receptors. Curr Opin Struct Biol 47:52–59

    Article  CAS  PubMed  Google Scholar 

  88. Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T (2015) Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22(2):109–115

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T (2016) Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748

    Article  CAS  PubMed  Google Scholar 

  90. Desnues B, Macedo AB, Roussel-Queval A, Bonnardel J, Henri S, Demaria O, Alexopoulou L (2014) TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 111(4):1497–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537

    Article  CAS  PubMed  Google Scholar 

  92. Guiducci C, Gong M, Cepika AM, Xu Z, Tripodo C, Bennett L, Crain C, Quartier P, Cush JJ, Pascual V, Coffman RL, Barrat FJ (2013) RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210(13):2903–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kioon MDA, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, Gordon JK, Barrat FJ (2018) Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 10:423

    Article  CAS  Google Scholar 

  94. Ugolini M, Gerhard J, Burkert S, Jensen KJ, Georg P, Ebner F, Volkers SM, Thada S, Dietert K, Bauer L, Schafer A, Helbig ET, Opitz B, Kurth F, Sur S, Dittrich N, Gaddam S, Conrad ML, Benn CS, Blohm U, Gruber AD, Hutloff A, Hartmann S, Boekschoten MV, Muller M, Jungersen G, Schumann RR, Suttorp N, Sander LE (2018) Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nat Immunol 19(4):386–396

    Article  CAS  PubMed  Google Scholar 

  95. Dowling DJ, van Haren SD, Scheid A, Bergelson I, Kim D, Mancuso CJ, Foppen W, Ozonoff A, Fresh L, Theriot TB, Lackner AA, Fichorova RN, Smirnov D, Vasilakos JP, Beaurline JM, Tomai MA, Midkiff CC, Alvarez X, Blanchard JL, Gilbert MH, Aye PP, Levy O (2017) TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight 2(6):e91020

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dowling DJ, Scott EA, Scheid A, Bergelson I, Joshi S, Pietrasanta C, Brightman S, Sanchez-Schmitz G, Van Haren SD, Ninkovic J, Kats D, Guiducci C, de Titta A, Bonner DK, Hirosue S, Swartz MA, Hubbell JA, Levy O (2017) Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol 140(5):1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B (2002) Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 109(12):1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hill L, Jeganathan V, Chinnasamy P, Grimaldi C, Diamond B (2011) Differential roles of estrogen receptors alpha and beta in control of B-cell maturation and selection. Mol Med 17(3–4):211–220

    Article  CAS  PubMed  Google Scholar 

  99. Pauklin S, Sernandez IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK (2009) Estrogen directly activates AID transcription and function. J Exp Med 206(1):99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tabor DE, Gould KA (2017) Estrogen receptor alpha promotes lupus in (NZBxNZW)F1 mice in a B cell intrinsic manner. Clin Immunol 174:41–52

    Article  CAS  PubMed  Google Scholar 

  101. Panchanathan R, Liu H, Choubey D (2013) Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity. Int Immunol 25(9):521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7(2):156–164

    Article  CAS  PubMed  Google Scholar 

  103. Pelka K, Latz E (2013) IRF5, IRF8, and IRF7 in human pDCs—the good, the bad, and the insignificant? Eur J Immunol 43(7):1693–1697

    Article  CAS  PubMed  Google Scholar 

  104. Steinhagen F, McFarland AP, Rodriguez LG, Tewary P, Jarret A, Savan R, Klinman DM (2013) IRF-5 and NF-kappaB p50 co-regulate IFN-beta and IL-6 expression in TLR9-stimulated human plasmacytoid dendritic cells. Eur J Immunol 43(7):1896–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsokos GC, Lo MS, Reis PC, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12:716–730

    Article  CAS  PubMed  Google Scholar 

  106. Cotton AM, Lam L, Affleck JG, Wilson IM, Peñaherrera MS, McFadden DE, Kobor MS, Lam WL, Robinson WP, Brown CJ (2011) Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130(2):187–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Di Nunzio S, Cecconi M, Passerini L, McMurchy AN, Baron U, Turbachova I, Vignola S, Valencic E, Tommasini A, Junker A, Cazzola G, Olek S, Levings MK, Perroni L, Roncarolo MG, Bacchetta R (2009) Wild-type FOXP3 is selectively active in CD4+CD25(hi) regulatory T cells of healthy female carriers of different FOXP3 mutations. Blood 114(19):4138–4141

    Article  CAS  PubMed  Google Scholar 

  108. Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH, Langefeld CD, Kelly JA, Ramsey-Goldman R, Petri MA, Reveille JD, Vila LM, Alarcon GS, Vyse TJ, Pons-Estel BA, Freedman BI, Gaffney PM, Sivils KM, James JA, Gregersen PK, Anaya JM, Niewold TB, Merrill JT, Criswell LA, Stevens AM, Boackle SA, Cantor RM, Chen W, Grossman JM, Hahn BH, Harley JB, Alarcomicronn-Riquelme ME, Brown EE, Tsao BP (2013) MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet 9(2):e1003336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Oh DY, Baumann K, Hamouda O, Eckert JK, Neumann K, Kucherer C, Bartmeyer B, Poggensee G, Oh N, Pruss A, Jessen H, Schumann RR (2009) A frequent functional toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression. Aids 23(3):297–307

    Article  CAS  PubMed  Google Scholar 

  110. Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20(5):614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT (2012) Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22(10):1864–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, Berletch JB, Blau CA, Shendure J, Duan Z, Noble WS, Disteche CM (2015) Bipartite structure of the inactive mouse X chromosome. Genome Biol 16:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van den Berg CH, Grady BP, Schinkel J, van de Laar T, Molenkamp R, van Houdt R, Coutinho RA, van Baarle D, Prins M (2011) Female sex and IL28B, a synergism for spontaneous viral clearance in hepatitis C virus (HCV) seroconverters from a community-based cohort. PLoS One 6(11):e27555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from Fondation pour la Recherche Médicale (DEQ20131029169 and DEQ20180339187), Fonds de Dotation CSL Behring, Fondation Arthritis, SIDACTION and Fondation ARC.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Jean-Charles Guéry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Sex differences in immunity – Guest Editors: Hanna Lotter and Marcus Altfeld

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souyris, M., Mejía, J.E., Chaumeil, J. et al. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 41, 153–164 (2019). https://doi.org/10.1007/s00281-018-0712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0712-y

Keywords

Navigation