Skip to main content
Log in

Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Imaging of the cardiac autonomic system with 123I-metaiodobenzylguanidine (MIBG) is useful in the evaluation of patients with a variety of cardiac conditions, including heart failure (HF), but few data are available about the reproducibility of this technique. We assessed the observer reproducibility of the results from a low-dose 123I-MIBG cardiac imaging protocol in patients with HF.

Methods

A total of 74 patients (62 men, age 67 ± 10 years) with HF and left ventricular systolic dysfunction (ejection fraction 31 ± 7 %) underwent low-dose (111 MBq) planar and single-photon emission computed tomography (SPECT) 123I-MIBG cardiac sympathetic imaging. The intraclass coefficient of correlation (ICC), Lin’s concordance correlation coefficient, and Bland-Altman analysis were used to evaluate the intraobserver and interobserver reproducibility of early and late heart-to-mediastinum (H/M) ratios and of defect scores on SPECT images. The κ statistic was used to evaluate the concordance rates for the identification of patients with a low H/M ratio (<1.60) on late planar imaging.

Results

The differences between measurements obtained twice by the same examiner and by two examiners were negligible for both early and late H/M ratios and for SPECT defect scores. These findings were confirmed by the results of Bland-Altman analysis, and ICC and Lin’s coefficient values were excellent (>0.90) for all measurements. For the identification of patients with a low H/M ratio, the κ values were 0.90 for intraobserver concordance and 0.83 for interobserver concordance.

Conclusion

The present study showed a high observer reproducibility of planar H/M ratios and SPECT defect scores using a low-dose 123I-MIBG cardiac imaging protocol in patients with HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.

    Article  PubMed  CAS  Google Scholar 

  2. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3:92–100.

    Article  PubMed  Google Scholar 

  3. Perrone-Filardi P, Paolillo S, Dellegrottaglie S, Gargiulo P, Savarese G, Marciano C, et al. Assessment of cardiac sympathetic activity by MIBG imaging in patients with heart failure: a clinical appraisal. Heart. 2011;97:1828–33.

    Article  PubMed  Google Scholar 

  4. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  5. Kuwabara Y, Tamaki N, Nakata T, Yamashina S, Yamazaki J. Determination of the survival rate in patients with congestive heart failure stratified by 123I-MIBG imaging: a meta-analysis from the studies performed in Japan. Ann Nucl Med. 2011;25:101–7.

    Article  PubMed  Google Scholar 

  6. Paul M, Wichter T, Kies P, Gerss J, Wollmann C, Rahbar K, et al. Cardiac sympathetic dysfunction in genotyped patients with arrhythmogenic right ventricular cardiomyopathy and risk of recurrent ventricular tachyarrhythmias. J Nucl Med. 2011;52:1559–65.

    Article  PubMed  CAS  Google Scholar 

  7. Veltman CE, Boogers MJ, Meinardi JE, Al Younis I, Dibbets-Schneider P, Van der Wall EE, et al. Reproducibility of planar (123)I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy in patients with heart failure. Eur J Nucl Med Mol Imaging. 2012;39:1599–608.

    Article  PubMed  CAS  Google Scholar 

  8. Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schäfers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  10. de Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033–9.

    Article  PubMed  Google Scholar 

  11. Bonett DG. Sample size requirements for estimating intraclass correlations with desired precision. Stat Med. 2002;21:1331–5.

    Article  PubMed  Google Scholar 

  12. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol. 2002;9:75–94.

    Article  PubMed  Google Scholar 

  13. Travin MI. Cardiac autonomic imaging with SPECT tracers. J Nucl Cardiol. 2013;20:128–43.

    Article  PubMed  Google Scholar 

  14. Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP. 1998; 28:1–126.

    Google Scholar 

  15. Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64:96–106.

    Article  PubMed  Google Scholar 

  16. Watson PF, Petrie A. Method agreement analysis: a review of correct methodology. Theriogenology. 2010;73:1167–79.

    Article  PubMed  CAS  Google Scholar 

  17. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22:85–93.

    Article  PubMed  CAS  Google Scholar 

  18. Bland JM, Altman DG. Measurement error and correlation coefficients. BMJ. 1996;313:41–2.

    Article  PubMed  CAS  Google Scholar 

  19. Shoukri MM. Measures of interobserver agreement. Boca Raton: Chapman & Hall/CRC; 2004.

    Google Scholar 

  20. Batterham AM, George KP. Reliability in evidence-based clinical practice: a primer for allied health professionals. Phys Ther Sport. 2000;1:54–62.

    Article  Google Scholar 

  21. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.

    PubMed  Google Scholar 

  22. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68.

    Article  PubMed  CAS  Google Scholar 

  23. Germano G, Kavanagh PB, Slomka PJ, Berman DS. Tracking a therapeutic response: how reliable are serial measurements of LV perfusion and function? J Nucl Cardiol. 2012;19:360–3.

    Article  PubMed  Google Scholar 

  24. Matsui T, Tsutamoto T, Maeda K, Kusukawa J, Kinoshita M. Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments – comparison with neurohumoral factors. Circ J. 2002;66:537–43.

    Article  PubMed  Google Scholar 

  25. Kasama S, Toyama T, Sumino H, Nakazawa M, Matsumoto N, Sato Y, et al. Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med. 2008;49:907–14.

    Article  PubMed  Google Scholar 

  26. Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3:64–70.

    Article  PubMed  Google Scholar 

  27. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implications for clinical studies. J Nucl Cardiol. 2004;11:126–33.

    Article  PubMed  Google Scholar 

  28. Estorch M, Serra-Grima R, Flotats A, Marí C, Bernà L, Catafau A, et al. Myocardial sympathetic innervation in the athlete’s sinus bradycardia: is there selective inferior myocardial wall denervation? J Nucl Cardiol. 2000;7:354–8.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuo S, Nakajima K, Okuda K, Kawano M, Ishikawa T, Hosoya T, et al. Standardization of the heart-to-mediastinum ratio of 123I-labelled-metaiodobenzylguanidine uptake using the dual energy window method: feasibility of correction with different camera collimator combinations. Eur J Nucl Med Mol Imaging. 2009;36:560–6.

    Article  PubMed  Google Scholar 

  30. Verberne HJ, Feenstra C, de Jong WM, Somsen GA, van Eck-Smit BL, Busemann SE. Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging. 2005;32:1100–7.

    Article  PubMed  Google Scholar 

  31. Nakajima K, Okuda K, Matsuo S, Yoshita M, Taki J, Yamada M, et al. Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study. Eur J Nucl Med Mol Imaging. 2012;39:113–9.

    Article  PubMed  CAS  Google Scholar 

  32. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo.

Additional information

Teresa Pellegrino and Mario Petretta contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrino, T., Petretta, M., De Luca, S. et al. Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. Eur J Nucl Med Mol Imaging 40, 1549–1557 (2013). https://doi.org/10.1007/s00259-013-2461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2461-4

Keywords

Navigation