Skip to main content
Log in

82Rb PET myocardial perfusion imaging is superior to 99mTc-labelled agent SPECT in patients with known or suspected coronary artery disease

  • Short Communication
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 28 August 2012

Abstract

Purpose

We compared the quality, interpretive confidence and interreader agreement between SPECT and PET myocardial perfusion imaging (MPI) in the same group of patients.

Methods

The study group comprised 27 patients (age 55 ± 8.5 years, 12 men) with known or suspected coronary artery disease (CAD) who had undergone gated rest/stress MPI with 99mTc-labelled agent SPECT (with and without attenuation correction, AC), and subsequent clinical confirmation with 82Rb PET. Three experienced readers blinded to the clinical information interpreted all MPI studies.

Results

Interreader agreement was significantly superior for PET studies than for SPECT studies. Following consensus interpretation, the quality of 22 % of the non-AC SPECT studies, 33 % of the AC SPECT studies and 63 % of the PET studies was assessed as excellent or good (p = 0.016). Interpretations were definitely normal or abnormal in 7 % of non-AC SPECT studies, 30 % of AC SPECT studies and 85 % of PET studies (p = 0.046). In 13 patients who had received either invasive coronary angiography or CT angiography with no significant CAD, the true-positive rate for significant CAD was higher for PET, and the true-negative rate was equal for PET and AC SPECT, and lower for non-AC SPECT.

Conclusion

82Rb PET MPI, used as a confirmatory test after SPECT, offers improved image quality, interpretive confidence and interreader agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  2. Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol. 2004;11:71–86.

    Article  PubMed  Google Scholar 

  3. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med. 2005;35:17–36.

    Article  PubMed  Google Scholar 

  4. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  5. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M. Comparison of rubidium-82 PET and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1991;67:1303–10.

    Article  PubMed  CAS  Google Scholar 

  6. Go RT, Marwick TH, MacIntyre WJ, Saha GB, Neumann DR, Underwood DA, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med. 1990;31:1899–905.

    PubMed  CAS  Google Scholar 

  7. Marwick TH, Go RT, MacIntyre WJ, Saha GB, Underwood DA. Myocardial perfusion imaging with positron emission tomography and single photon emission computed tomography: frequency and causes of disparate results. Eur Heart J. 1991;12:1064–9.

    PubMed  CAS  Google Scholar 

  8. Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Yao SS. ASNC imaging guidelines for nuclear cardiology procedures: stress protocols and tracers. J Nucl Cardiol. 2009. doi:10.1007/s12350-009-9062-4 . http://www.asnc.org/imageuploads/ImagingGuidelinesStressProtocols021109.pdf. Accessed 30 Apr 2012.

  9. Goetze S, Brown T, Lavely WC, Zhang Z, Bengel FM. Attenuation correction in myocardial perfusion SPECT/CT: effects of misregistration and value of reregistration. J Nucl Med. 2007;48:1090–95.

    Article  PubMed  Google Scholar 

  10. Brown TL, Merrill J, Volokh L, Bengel FM. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated (82)rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging. 2008;35:336–42.

    Article  PubMed  Google Scholar 

  11. Lautamaki R, Brown TL, Merrill J, Bengel FM. CT-based attenuation correction in 82Rb-myocardial perfusion PET-CT: incidence of misalignment and effect on regional tracer distribution. Eur J Nucl Med Mol Imaging. 2008;35:305–10.

    Article  PubMed  Google Scholar 

  12. Bravo PE, Chien D, Javadi M, Merrill J, Bengel FM. Reference ranges for LVEF and LV volumes from electrocardiographically gated 82Rb cardiac PET/CT using commercially available software. J Nucl Med. 2010;51:898–905.

    Article  PubMed  Google Scholar 

  13. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45–53.

    Article  PubMed  Google Scholar 

  14. Hendel RC, Wackers FJ, Berman DS, Ficaro E, DePuey EG, Klein L, et al. American Society of Nuclear Cardiology Consensus Statement: Reporting of Radionuclide Myocardial Perfusion Imaging Studies. J Nucl Cardiol. 2003;10:705–8.

    Article  PubMed  Google Scholar 

  15. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  16. Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, et al. American Society of Nuclear Cardiology. Single photon-emission computed tomography. J Nucl Cardiol. 2010;17:941–73.

    Article  PubMed  Google Scholar 

  17. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33.

    Article  PubMed  Google Scholar 

  18. Fricke E, Fricke H, Weise R, Kammeier A, Hagedorn R, Lotz N, et al. Attenuation correction of myocardial SPECT perfusion images with low-dose CT: evaluation of the method by comparison with perfusion PET. J Nucl Med. 2005;46:736–44.

    PubMed  Google Scholar 

  19. Jain M, Nkonde C, Lin BA, Walker A, Wackers FJ. 85 % of maximal age-predicted heart rate is not a valid endpoint for exercise treadmill testing. J Nucl Cardiol. 2011;18:1026–35.

    Article  PubMed  Google Scholar 

  20. Bateman TM. Advantages and disadvantages of PET and SPECT in a busy clinical practice. J Nucl Cardiol. 2012;19:S3–S11.

    Article  PubMed  Google Scholar 

  21. Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol. 2006;34:193–211.

    PubMed  Google Scholar 

  22. Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for (99m)Tc myocardial perfusion imaging. J Nucl Med. 2003;44:1725–34.

    PubMed  Google Scholar 

  23. Pitman AG, Kalff V, Van Every B, Risa B, Barnden LR, Kelly MJ. Contributions of subdiaphragmatic activity, attenuation, and diaphragmatic motion to inferior wall artifact in attenuation-corrected Tc-99m myocardial perfusion SPECT. J Nucl Cardiol. 2005;12:401–9.

    Article  PubMed  Google Scholar 

  24. Garcia EV. Physical attributes, limitations, and future potential for PET and SPECT. J Nucl Cardiol. 2012;19:S19–29.

    Article  PubMed  Google Scholar 

  25. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:761–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially financed by a grant from MIA-HSCSP, Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Flotats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flotats, A., Bravo, P.E., Fukushima, K. et al. 82Rb PET myocardial perfusion imaging is superior to 99mTc-labelled agent SPECT in patients with known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging 39, 1233–1239 (2012). https://doi.org/10.1007/s00259-012-2140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2140-x

Keywords

Navigation