Skip to main content

Advertisement

Log in

Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality?

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a well-established method in the follow-up of patients with differentiated thyroid carcinoma (DTC), elevated thyroglobulin (Tg) and negative 131I scans. This retrospective clinical study was designed to evaluate the impact of computed tomography (CT) and that of FDG-PET in combined FDG-PET/CT examinations on the restaging of DTC patients.

Methods

Forty-seven FDG-PET/CT scans of 33 patients with a history of DTC, elevated Tg levels and negative 131I uptake or additionally suspected 131I-negative lesions were studied. PET and CT images were analysed independently by an experienced nuclear medicine specialist and a radiologist. Afterwards a final consensus interpretation, the gold standard in our department, was provided for the fused PET/CT images and, if available, for supplementary investigations.

Results

Thirty-five investigations (74%) revealed pathological FDG-PET/CT findings. In summary, 25 local recurrences, 62 lymph node metastases and 122 organ metastases (41 lung, 60 bone, 21 other organs) were diagnosed. In 36 out of 47 examinations (77%), the original PET diagnoses were modified in the final consensus interpretation owing to the CT assessments. In 8 of the 35 pathological FDG-PET/CT examinations (23%), the final consensus interpretation of the PET/CT images led to an alteration in the treatment plan.

Conclusion

PET/CT is a powerful fusion of two pre-existing imaging modalities, which not only improves the diagnostic value in restaging DTC patients with elevated Tg and negative 131I scan, but also provides accurate information regarding subsequent treatment options and may lead to a change in treatment management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iwata M, Kasagi K, Misaki T, Matsumoto K, Iida Y, Ishimori T, et al. Comparison of whole-body 18F-FDG PET, 99mTc-MIBI SPECT, and post-therapeutic 131I-Na scintigraphy in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging 2004;31:491–8.

    Article  PubMed  CAS  Google Scholar 

  2. Grünwald F, Kälicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547–52.

    Article  PubMed  Google Scholar 

  3. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:1342–8.

    Article  PubMed  CAS  Google Scholar 

  4. Shiga T, Tsukamoto E, Nakada K, Morita K, Kato T, Mabuchi M, et al. Comparison of 18F-FDG, 131I-Na, and 201Tl in diagnosis of recurrent or metastatic thyroid carcinoma. J Nucl Med 2001;42:414–9.

    PubMed  CAS  Google Scholar 

  5. Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37:1468–72.

    PubMed  CAS  Google Scholar 

  6. Schlüter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001;42:71–6.

    PubMed  Google Scholar 

  7. Schönberger J, Rüschoff J, Grimm D, Marienhagen J, Rümmele P, Meyringer R, et al. Glucose transporter 1 gene expression is related to thyroid neoplasm with an unfavoreable prognosis: an immunhistochemical study [abstract]. Thyroid 2002;12:747–54.

    Article  PubMed  Google Scholar 

  8. Conti PS, Durski JM, Bacqai F, Grafton ST, Singer PA. Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid 1999;9:797–804.

    Article  PubMed  CAS  Google Scholar 

  9. Lind P, Gallowitsch HJ, Mikosch P, Kresnik E, Gomez I, Kumnig G, et al. Comparison of different tracers in the follow up of differentiated thyroid carcinoma. Acta Med Austriaca 1999;26:115–8.

    PubMed  CAS  Google Scholar 

  10. Gallowitsch HJ, Mikosch P, Kresnik E, Unterweger O, Gomez I, Lind P. Thyroglobulin and low-dose iodine-131 and technetium-99m-tetrofosmin whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med 1998;39:870–5.

    PubMed  CAS  Google Scholar 

  11. Lind P, Gallowitsch HJ, Langsteger W, Kresnik E, Mikosch P, Gomez I. Technetium-99m-tetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med 1997;38:348–52.

    PubMed  CAS  Google Scholar 

  12. Altenvoerde G, Lerch H, Kuwert T, Matheja P, Schäfers M, Schober O. Positron emission tomography with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbecks Arch Surg 1998;383:160–3.

    PubMed  CAS  Google Scholar 

  13. Alnafisi NS, Driedger AA, Coates G, Moote DJ, Raphael SJ. FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med 2000;41:1010–5.

    PubMed  CAS  Google Scholar 

  14. Khan N, Oriuchi N, Higuchi T, Zhang H, Endo K. PET in the follow-up of differentiated thyroid cancer. Br J Radiol 2003;76:690–5.

    Article  PubMed  CAS  Google Scholar 

  15. Helal OB, Merlet P, Toubert ME, Franc B, Schvartz C, Gauthier-Koelesnikov H, et al. Clinical impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy. J Nucl Med 2001;42:1464–9.

    PubMed  CAS  Google Scholar 

  16. Reske SN, Kotzerke J. FDG-PET for clinical use: results of the 3rd German interdisciplinary consensus conference, “Onko-PET III”, 21 July and 19 September 2000. Eur J Nucl Med 2001;28:1707–13.

    Article  PubMed  CAS  Google Scholar 

  17. Ong SC, Ng DCE, Sundram FX. Initial experience in use of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in thyroid carcinoma patients with elevated serum thyroglobulin but negative iodine-131 whole body scans. Singapore Med J 2005;46:297–301.

    PubMed  CAS  Google Scholar 

  18. Zimmer LA, McCook B, Meltzer C, Fukui M, Bascom D, Snyderman C, et al. Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 2003;128:178–84.

    Article  PubMed  Google Scholar 

  19. Nahas Z, Goldenberg D, Fakhry C, Ewertz M, Zeiger M, Ladenson PW, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 2005;115:237–43.

    Article  PubMed  Google Scholar 

  20. David A, Blotta A, Rossi R, Zatelli MC, Bondanelli M, Roti E, et al. Clinical value of different responses of serum thyroglobulin to recombinant human thyrotropin in the follow-up of patients with differentiated thyroid carcinoma. Thyroid 2005;15:158–64.

    Article  PubMed  CAS  Google Scholar 

  21. Moog F, Linke R, Manthey N, Tiling R, Knesewitsch P, Tatsch K, et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 2000;41:1989–95.

    PubMed  CAS  Google Scholar 

  22. Petrich T, Börner AR, Otto D, Hofmann M, Knapp WH. Influence of rhTSH on [18F]fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2002;29:641–57.

    Article  PubMed  CAS  Google Scholar 

  23. Van Tol KM, Jager PL, Piers DA, Pruim J, De Vries EGE, Dullaart RPF, et al. Better yield of 18Fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation [abstract]. Thyroid 2002;12:381–7.

    Article  PubMed  Google Scholar 

  24. Scott GC, Meier DA, Dickinson CZ. Cervical lymph node metastasis of thyroid papillary carcinoma imaged with fluorine-18-FDG, technetium-99m-pertechnetate and iodine-131-sodium iodide. J Nucl Med 1995;36:1843–5.

    PubMed  CAS  Google Scholar 

  25. Aquino SL, Kuester LB, Muse VV, Halpern EF, Fischman AJ. Accuracy of transmission CT and FDG-PET in the detection of small pulmonary nodules with integrated PET/CT. Eur J Nucl Med Mol Imaging 2005 (DOI 10.1007/s00259-005-0018-x).

  26. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glattnig G, Rentschler M, et al. Sensitivity in detecting osseus lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999;40:1623–9.

    PubMed  CAS  Google Scholar 

  27. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology 2005;237:627–34.

    PubMed  Google Scholar 

  28. Simon D, Körber C, Krausch M, Segering J, Groth P, Görges R, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging 2002;29:775–82.

    Article  PubMed  CAS  Google Scholar 

  29. Grüning T, Tiepolt C, Zöphel K, Bredow J, Kropp J, Franke WG. Retinoic acid for redifferentiation of thyroid cancer—does it hold its promise? Eur J Endocrinol 2003;148:395–402.

    Article  PubMed  Google Scholar 

  30. Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med 2005;46:752–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zoller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoller, M., Kohlfuerst, S., Igerc, I. et al. Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality?. Eur J Nucl Med Mol Imaging 34, 487–495 (2007). https://doi.org/10.1007/s00259-006-0276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0276-2

Keywords

Navigation