Skip to main content
Log in

Short-Term Heart Rate Variability in a Population-Based Sample of 10-Year-Old Children

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) is a non-invasive quantitative marker of cardiac autonomic function derived from continuous electrocardiogram (ECG) recordings. Normative HRV values and development factors have not been established in pediatric populations. The objective was to derive referent time- and frequency-domain HRV values for a population-based sample of children. Children aged 9–11 years (N = 1,036) participated in the Québec Longitudinal Study of Child Development cohort cardiovascular health screening. Registered nurses measured anthropometrics (height, weight) and children wore an ambulatory Holter monitor to continuously record an ECG signal. HRV variables included time (SDNN, pNN50, RMSSD, SDANN) and frequency (HF, LF, LF/HF ratio) domain variables. Normative HRV values, stratified by age, sex, and heart rate, are presented. Greater heart rate (β avg  = −0.60, R 2avg  = 0.39), pubertal maturation (β avg = −0.11, R 2avg  = 0.01), later ECG recording times (β avg = −0.19, R 2avg  = 0.07), and higher diastolic blood pressure (β avg = −0.11, R 2avg  = 0.01) were significantly associated with reduced HRV in 10-year-old children. The normative HRV values permit clinicians to monitor, describe, and establish pediatric nosologies in primary care and research settings, which may improve treatment of diseases associated with HRV in children. By better understanding existing values, the practical applicability of HRV among clinicians will be enhanced. Lastly, developmental (e.g., puberty) and procedural (e.g., recording time) factors were identified that will improve recording procedures and interpretation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HRV:

Heart rate variability

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

SDNN:

Standard deviation of all normal sinus RR intervals

SDANN:

Standard deviation of the averaged normal sinus RR intervals for all 5-min epochs

SDNNi:

Mean of the standard deviations of all normal sinus RR intervals for all 5-min epochs

rMSSD:

Root mean square of the successive normal sinus RR interval difference

pNN50:

Percentage of successive normal sinus RR intervals <50 ms

VLF:

Very low frequency

LF:

Low frequency

HF:

High frequency

References

  1. Berntson GG, Cacioppo JT, Quigley KS (1993) Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychol Bull 114:293–322

    Article  Google Scholar 

  2. Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6):623–648

    Article  CAS  PubMed  Google Scholar 

  3. Białłkowski J, Karwot B, Szkutnik M, Sredniawa B et al (2003) Comparison of heart rate variability between surgical and interventional closure of atrial septal defect in children. Am J Cardiol 92:356–358

    Article  Google Scholar 

  4. Blom EH, Olsson EMG, Serlachius E, Ericson M, Ingvar M (2009) Heart rate variability is related to self-reported physical activity in a healthy adolescent population. Europ J Appl Physiol 106(6):877–883

    Article  Google Scholar 

  5. Chen S-R, Chiu H-W, Lee Y-J, Sheen T-C, Jeng C (2012) Impact of pubertal development and physical activity on heart rate variability in overweight and obese children in Taiwan. J Sch Nurs 4:284–290

    Article  CAS  Google Scholar 

  6. Faulkner MS, Hathaway D, Tolley B (2003) Cardiovascular autonomic function in healthy adolescents. Heart Lung 32:10–22

    Article  PubMed  Google Scholar 

  7. Finley J, Nugent ST (1995) Heart rate variability in infants, children and young adults. J Auto Nerv 51:103–108

    Article  CAS  Google Scholar 

  8. Finley JP, Nugent ST, Hellenbrand W (1987) Heart-rate variability in children. Spectral analysis of developmental changes between 5 and 24 years. Can J Physiol Pharmacol 65(10):2048–2052

    Article  CAS  PubMed  Google Scholar 

  9. Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I et al (2011) Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 377:1011–1018

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fujiwara J, Kimura S, Tsukayama H, Nakahara S, Haibara S et al (2004) Evaluation of the autonomic nervous system function in children with primary monosymptomatic nocturnal enuresis-power spectrum. Scand J Urol Nephrol 35:350–356

    Article  Google Scholar 

  11. Golding J, Pembrey M, Jones R, The Alspac Study Team (2001) ALSPAC–the avon longitudinal study of parents and children. Paed Perin Epidemiol 15:74–87

    Article  CAS  Google Scholar 

  12. Guo YF, Stein PK (2003) Circadian rhythm in the cardiovascular system. Am Heart J 145:779–786

    Article  PubMed  Google Scholar 

  13. Hon EH, Lee ST (1965) Electronic evaluations of the fetal heart rate patterns preceding fetal death, further observations. Am J Obstet Gynae 87:814–826

    Google Scholar 

  14. Jetté M (2002) Survey description and methodology: Part I. Logistics and longitudinal data collections. Quebec Longitudinal Study of Child Development (QLSCD 1998–2000, Vol. 2, No. 1). Institut de la Statistique du Quebec, Quebec

    Google Scholar 

  15. Katheria A, Rich W, Finer N (2012) Electrocardiogram provides a continuous heart rate faster than oximetry during neonatal resuscitation. Pediatrics 130:1177–1181

    Article  Google Scholar 

  16. Kaufman CL, Kaiser DR, Steinberger J, Dengel DR (2007) Relationships between heart rate variability, vascular function, and adiposity in children. Clin Auton Res 17(3):165–171

    Article  PubMed  Google Scholar 

  17. Kleiger RE, Miller JP, Bigger JT, Moss AR (1987) Multicenter post-infarction research group: decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  18. Kwok K-L, Yung T-C, Ng DK, Chan C-H, Lau W-F, Fu Y-M (2011) Heart rate variability in childhood obstructive sleep apnea. Ped Pulmonol 210:205–210

    Article  Google Scholar 

  19. Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110(16):2307–2312

    Article  PubMed  Google Scholar 

  20. Liao D, Li X, Rodriguez-Colon SM, Liu J, Vgontzas AN, Calhoun S, Bixler EO (2010) Sleep-disordered breathing and cardiac autonomic modulation in children. Sleep Med 11(5):484–848

    Article  PubMed Central  PubMed  Google Scholar 

  21. Malpas S, Purdie GL (1990) Circadian variation of heart rate variability. Cardiovasc Res 24:210–213

    Article  CAS  PubMed  Google Scholar 

  22. Martini G, Riva P, Rabbia F, Molini V, Ferrero GB, Cerutti F, Carra R et al (2001) Heart rate variability in childhood obesity. Clin Auton Res 11(2):87–91

    Article  CAS  PubMed  Google Scholar 

  23. Massin M, von Bernuth G (1997) Normal ranges of heart rate variability during infancy and childhood. Ped Cardiol 18:297–302

    Article  CAS  Google Scholar 

  24. Massin MM, Maeyns K, Withofs N, Ravet F, Gérard P (2000) Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 83:179–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Morris NM, Udry JR (1980) Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolesc 9:271–280

    Article  CAS  PubMed  Google Scholar 

  26. Nagai N, Matsumoto T, Kita H, Moritani T (2003) Autonomic nervous system activity and the state and development of obesity in Japanese school children. Obes Res 11(1):25–32

    Article  PubMed  Google Scholar 

  27. Netherton C, Goodyer I, Tamplin A, Herbert J (2004) Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology 29:125–140

    Article  CAS  PubMed  Google Scholar 

  28. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R et al (2002) Growth charts for the United States: improvements to the 1977 National Center for Health Statistics Version. Pediatrics 109:45–60

    Article  PubMed  Google Scholar 

  29. Ordaz S, Luna B (2012) Sex differences in physiological reactivity to acute psychosocial stress in adolescence. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2012.01.002

    PubMed Central  PubMed  Google Scholar 

  30. Palatini P, Julius S (2009) The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep 11:199–205

    Article  PubMed  Google Scholar 

  31. Reed KE, Warburton DER, Whitney CL, McKay HA (2006) Differences in heart rate variability between Asian and Caucasian children living in the same Canadian community. Appl Physiol Nutr Metab 31:277–282

    Article  PubMed  Google Scholar 

  32. Rodríguez-colón SM, He F, Shaffer ML, Li X, Vgontzas AN, Bixler EO et al (2011) Insomnia symptoms and sleep duration are associated with impaired cardiac autonomic modulation in children. Neurosci Med. 2:288–294

    Article  Google Scholar 

  33. Rodríguez-Colón SM, Bixler EO, Li X, Vgontzas AN, Liao D (2011) Obesity is associated with impaired cardiac autonomic modulation in children. IJPO 6(2):128–134

    PubMed Central  PubMed  Google Scholar 

  34. Rogol AD, Clark PA, Roemmich JN (2000) Growth and pubertal development in children and adolescents: effects of diet and physical activity. Am J Clin Nutr 72:521s–528s

    CAS  PubMed  Google Scholar 

  35. Rydberg A, Rask P, Hörnsten R, Teien D (2004) Heart rate variability in children with Fontan circulation. Ped Cardiol 25(4):365–369

    Article  CAS  Google Scholar 

  36. Schroeder EB, Duanping L, Chambless LE, Prineas RJ, Evans GW, Heiss G (2003) Hypertension, blood pressure, and heart rate variability. The atherosclerosis risk in communities (ARIC) study. Hypertension 42:1106–1111

    Article  CAS  PubMed  Google Scholar 

  37. Silvetti MS, Drago F, Ragonese P (2001) Heart rate variability in healthy children and adolescents is partially related to age and gender. Int J Cardiol 81:169–174

    Article  CAS  PubMed  Google Scholar 

  38. Stein PK, Kleiger RE, Rottman JN (1997) Differing effects of age on heart rate variability in men and women. Am J Cardiol 80:302–305

    Article  CAS  PubMed  Google Scholar 

  39. Task Force of the European Society of Cardiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  40. Thayer JF, Sternberg E (2006) Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci 1088:361–372

    Article  CAS  PubMed  Google Scholar 

  41. Tremaine RB, Dorrian J, Blunden S (2010) Measuring sleep habits using the sleep timing questionnaire: a validation study for school-age children. Sleep Biol Rhythms 8:194–202

    Article  Google Scholar 

  42. Tsuji H, Venditti FJ, Manders ES, Evans JC, Larson MG, Feldman CL et al (1996) Determinants of heart rate variability. J Am Coll Cardiol 28:1539–1546

    Article  CAS  PubMed  Google Scholar 

  43. Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Col Card 31(3):593–601

    Article  CAS  Google Scholar 

  44. Wallis LA, Healy M, Undy MB, Maconochie I (2005) Age related reference ranges for respiration rate and heart rate from 4 to 16 years. Arch Dis Child 90:1117–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wang X, Thayer JF, Treiber F, Snieder H (2005) Ethnic differences and heritability of heart rate variability in African- and European American youth. Am J Cardiol 96:1166–1172

    Article  PubMed  Google Scholar 

  46. Wawryk AM, Bates DJ, Couper JJ (1997) Power spectral analysis of heart rate variability in children and adolescents with IDDM. Diabetes Care 20:1416–1421

    Article  CAS  PubMed  Google Scholar 

  47. Webber LS, Osganian V, Luepker RV, Feldman HA, Stone EJ et al (1995) Cardiovascular risk factors among 3rd grade children in four regions of United States: the CATCH study. Am J Epidemiol 141:428–439

    CAS  PubMed  Google Scholar 

  48. Winsley RJ, Armstrong N, Bywater K, Fawkner SG (2003) Reliability of heart rate variability measures at rest and during light exercise in children. Brit J Sports Med 37(6):550–552

    Article  CAS  Google Scholar 

  49. Wolfson AR, Carskadon MA (1998) Sleep schedules and daytime functioning in adolescents. Child Dev 69:875–887

    Article  CAS  PubMed  Google Scholar 

  50. Yamasaki Y, Kodama M, Matsuhisa M (1996) Diurnal heart rate variability in healthy subjects: effects of aging and sex differences. Am J Physiol 271:303–310

    Google Scholar 

Download references

Acknowledgments

The authors extend their sincere thanks to Drs. Marie Lambert (posthumous) and Blaine Ditto for their invaluable contributions at the inception of this project. The principal financial contributors of the 1996-2014 ELDEQ cohort were Institut de la statistique du Québec and their partners: Fondation Lucie et André Chagnon, Ministère de la Santé et des Services sociaux du Québec, Ministère de la Famille du Québec, Research Unit on Childhood Psychosocial Maladjustment, Centre hospitalier universitaire Sainte-Justine, and Institut de recherche Robert-Sauvé en santé et en sécurité du travail. The cardiovascular screening assessment of the ELDEQ cohort was funded by the Canadian Institutes of Health Research (# 00309MOP-123079, #HDF-70335). Institut de recherché en santé publique de l’Université de Montréal, Centre hospitalier universitaire Sainte-Justine, and Centre de recherche du Centre hospitalier de l’Université de Montréal received infrastructure funding from Fonds de la recherche en santé du Québec. This research was in part conducted by members of TEAM PRODIGY, an inter-university research team including Université de Montréal, Concordia University, Université Laval, McGill University, and University of Toronto.

Conflict of interest

Dr. Jennifer McGrath reports grants (#OCO-79897, #MOP-89886) and a New Investigator Award (#MSH95353) from Canadian Institutes of Health Research that supported this research. Dr. Jacques Montplaisir reports personal fees from Sanofi-Aventis, Servier, Merck, Jazz Pharm, Valeant Pharm, Impax Laboratories, Otsuka Pharm, and grants from Merck and GSK, outside the submitted work. Dr. Jean R. Séguin reports grants from Canadian Institutes of Health Research (Grants #MOP-44072) and Fonds de recherche en santé du Québec (#991027, #981055). All remaining authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. McGrath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrin, D.C., McGrath, J.J., Poirier, P. et al. Short-Term Heart Rate Variability in a Population-Based Sample of 10-Year-Old Children. Pediatr Cardiol 36, 41–48 (2015). https://doi.org/10.1007/s00246-014-0962-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-0962-y

Keywords

Navigation