Skip to main content

Advertisement

Log in

Transcriptional Regulation of Heart Valve Progenitor Cells

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The development and normal function of the heart valves requires complex interactions among signaling molecules, transcription factors and structural proteins that are tightly regulated in time and space. Here we review the roles of critical transcription factors that are required for specific aspects of normal valve development. The early progenitors of the heart valves are localized in endocardial cushions that express transcription factors characteristic of mesenchyme, including Twist1, Tbx20, Msx1 and Msx2. As the valve leaflets mature, they are composed of complex stratified extracellular matrix proteins that are regulated by the transcriptional functions of NFATc1, Sox9, and Scleraxis. Each of these factors has analogous functions in differentiation of related connective tissue lineages. Together, the precise timing and localized functions of specific transcription factors control cell proliferation, differentiation, elongation, and remodeling processes that are necessary for normal valve structure and function. In addition, there is increasing evidence that these same transcription factors contribute to congenital, as well as degenerative, valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  CAS  PubMed  Google Scholar 

  2. Akiyama H, Chaboissier MC, Behringer RR, Rowitch DH, Schedl A, Epstein JA, de Crombrugghe B (2004) Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci USA 101:6502–6507

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470

    Article  CAS  PubMed  Google Scholar 

  4. Barnes RM, Firulli AB (2009) A twist of insight-the role of Twist-family bHLH factors in development. Int J Dev Biol 53:909–924

    Article  CAS  PubMed  Google Scholar 

  5. Blanco R, Chakraborty R, Barton SA, Carreno H, Paredes M, Jara L, Palomino H, Schull WJ (2001) Evidence of a sex-dependent association between the MSX1 locus and nonsyndromic cleft lip with or without cleft palate in the Chilean population. Hum Biol 73:81–89

    Article  CAS  PubMed  Google Scholar 

  6. Brent AE, Tabin CJ (2004) FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131:3885–3896

    Article  CAS  PubMed  Google Scholar 

  7. Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X, Li X, Rosenfeld MG, Chen J, Evans S (2005) T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–2487

    Article  CAS  PubMed  Google Scholar 

  8. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47:1707–1712

    Article  CAS  PubMed  Google Scholar 

  9. Castanon I, Baylies MK (2002) A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287:11–22

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborty S, Cheek J, Sakthivel B, Aronow BJ, Yutzey KE (2008) Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol Genomics 35:75–85

    Article  CAS  PubMed  Google Scholar 

  11. Chang CP, Neilson JR, Bayle JH, Gestwicki JE, Kuo A, Stankunas K, Graef IA, Crabtree GR (2004) A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell 118:649–663

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y-H, Ishii M, Sun J, Sucov HM, Maxson REJ (2007) Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest cells in the outflow tract. Dev Biol 308:421–437

    Article  CAS  PubMed  Google Scholar 

  13. Chen YH, Ishii M, Sucov HM, Maxson RE Jr (2008) Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Dev Biol 8:75

    Article  CAS  PubMed  Google Scholar 

  14. Chen ZF, Behringer RR (1995) Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9:686–699

    Article  CAS  PubMed  Google Scholar 

  15. Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM (2003) Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 257:292–301

    Article  CAS  PubMed  Google Scholar 

  16. Combs MD, Yutzey KE (2009) Heart valve development: regulatory networks in development and disease. Circ Res 105:408–421

    Article  CAS  PubMed  Google Scholar 

  17. Combs MD, Yutzey KE (2009) VEGF and RANKL regulation of NFATc1 in heart valve development. Circ Res 105:565–574

    Article  CAS  PubMed  Google Scholar 

  18. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    Article  CAS  PubMed  Google Scholar 

  19. Davidson D (1995) The function and evolution of Msx genes: pointers and paradoxes. Trends Genet 11:405–411

    Article  CAS  PubMed  Google Scholar 

  20. de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186

    Article  Google Scholar 

  21. de Lange FJ, Moorman AF, Anderson RH, Manner J, Soufan AT, de Gier-de Vries C, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95:645–654

    Article  PubMed  Google Scholar 

  22. Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D (2002) Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol 247:351–366

    Article  CAS  PubMed  Google Scholar 

  23. Fishman MC, Chien KR (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117

    CAS  PubMed  Google Scholar 

  24. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530

    Article  CAS  PubMed  Google Scholar 

  25. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA Jr, Falb D, Huszar D (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174

    Article  CAS  PubMed  Google Scholar 

  26. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Article  CAS  PubMed  Google Scholar 

  27. Hinton RB Jr, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, Yutzey KE (2006) Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res 98:1431–1438

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  29. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  CAS  PubMed  Google Scholar 

  30. Jabs EW, Muller U, Li X, Ma L, Luo W, Haworth IS, Klisak I, Sparkes R, Warman ML, Mulliken JB et al (1993) A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443–450

    Article  CAS  PubMed  Google Scholar 

  31. Johnson EN, Lee YM, Sander TL, Rabkin E, Schoen FJ, Kaushal S, Bischoff J (2003) NFATc1 mediates vascular endothelial growth factor-induced proliferation of human pulmonary valve endothelial cells. J Biol Chem 278:1686–1692

    Article  CAS  PubMed  Google Scholar 

  32. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffiths L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Winlaw DS, Harvey RP (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  CAS  PubMed  Google Scholar 

  33. Lange AW, Molkentin JD, Yutzey KE (2004) DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice. Dev Biol 266:346–360

    Article  CAS  PubMed  Google Scholar 

  34. Lange AW, Yutzey KE (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol 292:407–417

    Article  CAS  PubMed  Google Scholar 

  35. Levay AK, Peacock JD, Lu Y, Koch M, Hinton RB Jr, Kadler KE, Lincoln J (2008) Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res 103:948–956

    Article  CAS  PubMed  Google Scholar 

  36. Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S, Dejana E (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166:359–367

    Article  CAS  PubMed  Google Scholar 

  37. Lincoln J, Alfieri CM, Yutzey KE (2004) Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn 230:239–250

    Article  CAS  PubMed  Google Scholar 

  38. Lincoln J, Alfieri CM, Yutzey KE (2006) BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 292:292–302

    Article  PubMed  Google Scholar 

  39. Lincoln J, Lange AW, Yutzey KE (2006) Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 294:292–302

    Article  CAS  PubMed  Google Scholar 

  40. Lincoln J, Kist R, Scherer G, Yutzey KE (2007) Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol 305:120–132

    Article  CAS  PubMed  Google Scholar 

  41. Ma L, Lu MF, Schwartz RJ, Martin JF (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611

    Article  CAS  PubMed  Google Scholar 

  42. Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148:85–119

    Article  CAS  PubMed  Google Scholar 

  43. Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233:1217–1237

    Article  PubMed  Google Scholar 

  44. Moorman A, Webb S, Brown NA, Lamers W, Anderson RH (2003) Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89:806–814

    Article  PubMed  Google Scholar 

  45. Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134:2697–2708

    Article  CAS  PubMed  Google Scholar 

  46. Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335

    Article  CAS  PubMed  Google Scholar 

  47. Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL (2007) Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:3015–3038

    Article  PubMed  Google Scholar 

  48. Plageman TF Jr, Yutzey KE (2004) Differential expression and function of Tbx5 and Tbx20 in cardiac development. J Biol Chem 279:19026–19034

    Article  CAS  PubMed  Google Scholar 

  49. Plageman TF Jr, Yutzey KE (2005) T-box genes and heart development: putting the “T” in heart. Dev Dyn 232:11–20

    Article  CAS  PubMed  Google Scholar 

  50. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532

    Article  CAS  PubMed  Google Scholar 

  51. Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190

    Article  CAS  PubMed  Google Scholar 

  52. Reardon W, Winter RM (1994) Saethre-Chotzen syndrome. J Med Genet 31:393–396

    Article  CAS  PubMed  Google Scholar 

  53. Rivera-Feliciano J, Tabin CJ (2006) Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Dev Biol 295:580–588

    Article  CAS  PubMed  Google Scholar 

  54. Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  CAS  PubMed  Google Scholar 

  55. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24:391–395

    Article  CAS  PubMed  Google Scholar 

  56. Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118:1864–1880

    Article  PubMed  Google Scholar 

  57. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    CAS  PubMed  Google Scholar 

  58. Shao J-S, Cheng S-L, Pingsterhaus JM, Charlton-Kachigian N, Leowy AP, Towler DA (2005) Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115:1210–1220

    CAS  PubMed  Google Scholar 

  59. Shelton EL, Yutzey KE (2007) Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol 302:376–388

    Article  CAS  PubMed  Google Scholar 

  60. Shelton EL, Yutzey KE (2008) Twist1 function in endocardial cell proliferation, migration, and differentiation during heart valve development. Dev Biol 317:282–295

    Article  CAS  PubMed  Google Scholar 

  61. Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K, Burger A, Ericson J, Kispert A (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707

    Article  CAS  PubMed  Google Scholar 

  62. Soo K, O’Rourke MP, Khoo PL, Steiner KA, Wong N, Behringer RR, Tam PP (2002) Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev Biol 247:251–270

    Article  CAS  PubMed  Google Scholar 

  63. Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Article  CAS  PubMed  Google Scholar 

  64. Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, McDonald LP, Niederreither K, Dolle P, Bruneau BG, Zorn AM, Harvey RP (2003) Cardiac T-box factor Tbx20 directly interacts with Nkx2–5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol 262:206–224

    Article  CAS  PubMed  Google Scholar 

  65. Stennard FA, Costa MW, Lai D, Biben C, Furtado MB, Solloway MJ, McCulley DJ, Leimena C, Preis JI, Dunwoodie SL, Elliott DE, Prall OW, Black BL, Fatkin D, Harvey RP (2005) Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132:2451–2462

    Article  CAS  PubMed  Google Scholar 

  66. Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910

    Article  CAS  PubMed  Google Scholar 

  67. Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83:170–179

    Article  CAS  PubMed  Google Scholar 

  68. Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, Heidt AB, Mori AD, Arruda EP, Gertsenstein M, Georges R, Davidson L, Mo R, Hui CC, Henkelman RM, Nemer M, Black BL, Nagy A, Bruneau BG (2005) Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132:2463–2474

    Article  CAS  PubMed  Google Scholar 

  69. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P (2006) Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151

    Article  PubMed  Google Scholar 

  70. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115

    Article  CAS  PubMed  Google Scholar 

  71. Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13:417–421

    Article  CAS  PubMed  Google Scholar 

  72. Vincentz JW, Barnes RM, Rodgers R, Firulli BA, Conway SJ, Firulli AB (2008) An absence of Twist1 results in aberrant cardiac neural crest morphogenesis. Dev Biol 320:131–139

    Article  CAS  PubMed  Google Scholar 

  73. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79:1111–1120

    Article  CAS  PubMed  Google Scholar 

  74. Zhou B, Wu B, Tompkins KL, Boyer KL, Grindley JC, Baldwin HS (2005) Characterization of Nfatc1 regulation identifies an enhancer required for gene expression that is specific to pro-valve endocardial cells in the developing heart. Development 132:1137–1145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant support: NIH NHLBI HLR0182716 to K.E.Y., American Heart Association-Great Rivers Affiliate Post-Doctoral Fellowship 0825627D to S.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Yutzey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Combs, M.D. & Yutzey, K.E. Transcriptional Regulation of Heart Valve Progenitor Cells. Pediatr Cardiol 31, 414–421 (2010). https://doi.org/10.1007/s00246-009-9616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9616-x

Keywords

Navigation