Skip to main content
Log in

Analysis of Ventricular Hypertrabeculation and Noncompaction Using Genetically Engineered Mouse Models

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Ventricular trabeculation and compaction are two of the many essential steps for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with ventricular compact zone deficiencies (hypoplastic wall), which commonly lead to embryonic heart failure and early embryonic lethality. In contrast, hypertrabeculation and lack of ventricular wall compaction (noncompaction) are closely related defects in cardiac embryogenesis associated with left ventricular noncompaction, a genetically heterogeneous disorder. Here we summarize our recent findings through the analyses of several genetically engineered mouse models that have defects in cardiac trabeculation and compaction. Our data indicate that cellular growth and differentiation signaling pathways are keys in these ventricular morphogenetic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson RH, Webb S et al (2003) Development of the heart: (2) Septation of the atriums and ventricles. Heart 89(8):949–958

    Article  PubMed  Google Scholar 

  2. Anderson RH, Webb S et al (2003) Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 89(9):1110–1118

    Article  PubMed  Google Scholar 

  3. Bartman T, Hove J (2005) Mechanics and function in heart morphogenesis. Dev Dynam 233(2):373–381

    Article  Google Scholar 

  4. Besson A, Dowdy SF et al (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169

    Article  PubMed  CAS  Google Scholar 

  5. Bierer BE, Mattila PS et al (1990) Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci USA 87(23):9231–9235

    Article  PubMed  CAS  Google Scholar 

  6. Brutsaer DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263(4; Pt 2):H985–H1002

    Google Scholar 

  7. Cameron AM, Nucifora FC Jr et al (1997) FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J Biol Chem 272(44):27582–27588

    Article  PubMed  CAS  Google Scholar 

  8. Cameron AM, Steiner JP et al (1995) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83(3):463–472

    Article  PubMed  CAS  Google Scholar 

  9. Chen H, Shi S et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231

    Article  PubMed  CAS  Google Scholar 

  10. Chen Q, Chen H et al (2009) Smad7 is required for the development and function of heart. J Biol Chem 284(1):292–300

    Article  PubMed  CAS  Google Scholar 

  11. Clendenon JL, Phillips CL et al (2002) Voxx: a PC-based, near real-time volume rendering system for biological microscopy. Am J Physiol Cell Physiol 282(1):C213–C218

    PubMed  CAS  Google Scholar 

  12. Cook AC, Yates RW et al (2004) Normal and abnormal fetal cardiac anatomy. Prenat Diagn 24(13):1032–1048

    Article  PubMed  Google Scholar 

  13. Gourdie RG, Kubalak S et al (1999) Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Med 9(1–2):18–26

    Article  PubMed  CAS  Google Scholar 

  14. Hagopian M, Spiro D (1970) Derivation of the Z line in the embryonic chick heart. J Cell Biol 44(3):683–687

    Article  PubMed  CAS  Google Scholar 

  15. Heldin CH, Miyazono K et al (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471

    Article  PubMed  CAS  Google Scholar 

  16. Icardo JM (1988) Heart anatomy and developmental biology. Experientia 44(11–12):910–919

    Article  PubMed  CAS  Google Scholar 

  17. Icardo JM, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat (Basel) 130(3):264–274

    Article  CAS  Google Scholar 

  18. Jayaraman T, Brillantes AM et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267(14):9474–9477

    PubMed  CAS  Google Scholar 

  19. King T, Bland Y et al (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dynam 225(2):212–215

    Article  CAS  Google Scholar 

  20. Klaassen S, Probst S et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901

    Article  PubMed  CAS  Google Scholar 

  21. Kochilas LK, Li J et al (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45(5; Pt 1):635–642

    Article  PubMed  CAS  Google Scholar 

  22. Lee Y, Song AJ et al (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86(9):932–938

    PubMed  CAS  Google Scholar 

  23. Meilhac SM, Kelly RG et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130(16):3877–3889

    Article  PubMed  CAS  Google Scholar 

  24. Mikawa T, Borisov A et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dynam 193(1):11–23

    CAS  Google Scholar 

  25. Mikawa T, Cohen-Gould L et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dynam 195(2):133–141

    CAS  Google Scholar 

  26. Mikawa T, Gourdie RG et al (2002) Induction and patterning of the Purkinje fibre network. Novartis Found Symp 250:142–153; discussion 153–156

    Article  Google Scholar 

  27. Moorman A, Webb S et al (2003) Development of the heart: (1) Formation of the cardiac chambers and arterial trunks. Heart 89(7):806–814

    Article  PubMed  Google Scholar 

  28. Moorman AF, Christoffels VM et al (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond Ser B Biol Sci 362(1484):1257–1265

    Article  Google Scholar 

  29. Neuhaus H, Rosen V et al (1999) Heart specific expression of mouse BMP-10, a novel member of the TGF-beta superfamily. Mech Dev 80(2):181–184

    Article  PubMed  CAS  Google Scholar 

  30. Pashmforoush M, Lu JT et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117(3):373–386

    Article  PubMed  CAS  Google Scholar 

  31. Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90(10):1044–1054

    Article  PubMed  CAS  Google Scholar 

  32. Pignatelli RH, McMahon CJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108(21):2672–2678

    Article  PubMed  Google Scholar 

  33. Risebro CA, Riley PR (2006) Formation of the ventricles. Sci World J 6:1862–1880

    Google Scholar 

  34. Ronna KC (1977) Myogenesis and contraction in the early embryonic heart of the rainbow trout. An electron microscopic study. Cell Tissue Res 180(1):123–132

    PubMed  CAS  Google Scholar 

  35. Rumyantsev PP, Krylova MI (1990) Ultrastructure of myofibers and cells synthesizing DNA in the developing and regenerating lymph-heart muscles. Int Rev Cytol 120:1–52

    Article  PubMed  CAS  Google Scholar 

  36. Sandhu R, Finkelhor RS et al (2008) Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiography 25(1):8–12

    PubMed  Google Scholar 

  37. Schreiber SL, Crabtree GR (1995) Immunophilins, ligands, and the control of signal transduction. Harvey Lect 91:99–114

    PubMed  Google Scholar 

  38. Sedmera D, Pexieder T et al (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337

    Article  PubMed  CAS  Google Scholar 

  39. Shi W, Chen H et al (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261(2):371–380

    Article  PubMed  CAS  Google Scholar 

  40. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  41. Shou W, Aghdasi B et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391(6666):489–492

    Article  PubMed  CAS  Google Scholar 

  42. Taber LA (1998) Mechanical aspects of cardiac development. Prog Biophys Mol Biol 69(2–3):237–255

    Article  PubMed  CAS  Google Scholar 

  43. Timerman AP, Ogunbumni E et al (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268(31):22992–22999

    PubMed  CAS  Google Scholar 

  44. Wang T, Li BY et al (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444

    Article  PubMed  CAS  Google Scholar 

  45. Weiford BC, Subbarao VD et al (2004) Noncompaction of the ventricular myocardium. Circulation 109(24):2965–2971

    Article  PubMed  Google Scholar 

  46. Xing Y, Ichida F et al (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by National Institutes of Health Grants HL81092 (W.S.), HL70259 (W.S.), and HL85098 (W.S., M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weinian Shou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Zhang, W., Li, D. et al. Analysis of Ventricular Hypertrabeculation and Noncompaction Using Genetically Engineered Mouse Models. Pediatr Cardiol 30, 626–634 (2009). https://doi.org/10.1007/s00246-009-9406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9406-5

Keywords

Navigation