Skip to main content
Log in

Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this relationship is altered when greater accuracy is required. The movements were made to either a vertical dowel or to a cross bar of a small cross. All subjects were asked to reach for either target at a fast but comfortable speed, grasp the object between the index finger and thumb, and lift it a short distance off the table. In terms of the relationship between arm transport and grip aperture, the control subjects showed a high consistency in grip aperture and wrist velocity profiles from trial to trial for movements to both the dowel and the cross. The relationship between the maximum velocity of the wrist and the time at which grip aperture was maximal during the reach was highly consistent throughout the experiment. In contrast, the time of maximum grip aperture and maximum wrist velocity of the cerebellar patients was quite variable from trial to trial, and the relationship of these measurements also varied considerably. These abnormalities were present regardless of the accuracy requirement. In addition, the cerebellar patients required a significantly longer time to grasp and lift the objects than the control subjects. Furthermore, the patients exhibited a greater grip aperture during reach than the controls. These data indicate that the cerebellum contributes substantially to the coordination of movements required to perform reach-to-grasp movements. Specifically, the cerebellum is critical for executing this behavior with a consistent, well-timed relationship between the transport and grasp components. This contribution is apparent even when accuracy demands are minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babin-Ratté S, Sirigu A, Gilles M, Wing A (1999) Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Exp Brain Res 128:81–85

    Article  PubMed  Google Scholar 

  • BastÍan AJ, Thach WT (1995) Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann Neurol 38:881–892

    Article  PubMed  Google Scholar 

  • Bastían AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:492–509

    PubMed  Google Scholar 

  • Beaubaton D, Trouche E (1982) Participation of the cerebellar dentate nucleus in the control of a goal-directed movement in monkeys: effects of reversible or permanent dentate lesion on the duration and accuracy of a pointing response. Exp Brain Res 46:127–138

    Article  PubMed  CAS  Google Scholar 

  • Becker WJ, Morrice BL, Clark AW, Lee RG (1991) Multi-joint reaching movements and eye-hand tracking in cerebellar incoordination: investigation of a patient with complete loss of Purkinje cells. Can J Neurol Sci 18:476–487

    PubMed  CAS  Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension. Neurology 50:1253–1259

    PubMed  CAS  Google Scholar 

  • Bloedel JR, Bracha V (1995) On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res 68:1–44

    Article  PubMed  CAS  Google Scholar 

  • Bloedel JR, Bracha V, Shimansky Y, Milak MS (1996) The role of the cerebellum in the acquisition of complex volitional fore-limb movements. In: Bloedel JR, Ebner TJ, Wise SP (eds) The acquisition of motor behavior in vertebrates. MIT press, Cambridge, MA, pp 319–342

    Google Scholar 

  • Bonnefoi-Kyriacou B, Legallet E, Lee RG, Trouche E (1998) Spatio-temporal and kinematic analysis of pointing movements performed by cerebellar patients with limb ataxia. Exp Brain Res 119:460–466

    Article  PubMed  CAS  Google Scholar 

  • Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR (1997) Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain 120:1401–1413

    Article  PubMed  Google Scholar 

  • Castiello U, Bennett KMB (1994) Parkinson’s disease: reorganization of the reach to grasp movement in response to perturbation of the distal motor patterning. Neuropsychologia 32: 1367–1382

    Article  PubMed  CAS  Google Scholar 

  • Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF (1999) The reach-to-grasp movement in Parkinson’s disease: response to a simultaneous perturbation of object position and object size. Exp Brain Res 125:453–462

    Article  PubMed  CAS  Google Scholar 

  • Chieffi S, Gentilucci M (1993) Coordination between the transport and the grasp components during prehension movements. Exp Brain Res 94:471–477

    Article  PubMed  CAS  Google Scholar 

  • Conrad B, Brooks VB (1974) Effects of dentate cooling on rapid alternating arm movements. J Neurophysiol 37:792–804

    PubMed  CAS  Google Scholar 

  • Dichgans J, Diener HC (1984) Clinical evidence for functional compartmentalization of the cerebellum. In: Bloedel JR, Dichgans JD, Precht W (eds) Cerebellar functions. Springer, Berlin Heidelberg New York, pp 126–147

    Google Scholar 

  • Faillenot I, Toni I, Decety J, Grégoire MC, Jeannerod M (1997) Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb Cortex 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • Flament D, Höre J (1986) Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol 55:1221–1233

    PubMed  CAS  Google Scholar 

  • Gentilucci M, Negrotti A (1999) The control of an action in Parkinson’s disease. Exp Brain Res 129:269–277

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Horn KM, Stein JF, Van Kan PLE (1996) Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol 74:499–512

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Horn KM, Pong M, Van Kan PLE (1998) Construction of a reach-to-grasp. In: Bock GR, Goode JA (eds) Sensory guidance of movement. Wiley, Chichester, pp 233–251

    Chapter  Google Scholar 

  • Gilman S, Carr D, Hollenberg J (1976) Kinematic effects of deaf-ferentation and cerebellar ablation. Brain 99:311–330

    Article  PubMed  CAS  Google Scholar 

  • Goodkin HP, Keating JG, Martin TA, Thach WT (1993) Preserved simple and impaired compound movement after infraction in the territory of the superior cerebellar artery. Can J Neurol Sci [Suppl 3]20:S93-S104

    PubMed  Google Scholar 

  • Grill SE, Hallett M, Marcus C, McShane L (1994) Disturbances of kinaesthesia in patients with cerebellar disorders. Brain 117: 1433–1447

    Article  PubMed  Google Scholar 

  • Grill SE, Hallett M, McShane LM (1997) Timing of onset of afferent responses and of use of kinesthetic information for control of movement in normal and cerebellar-impaired subjects. Exp Brain Res 113:33–47

    Article  PubMed  CAS  Google Scholar 

  • Haggard P, Jenner J, Wing A (1994) Coordination of aimed movements in a case of unilateral cerebellar damage. Neuropsychologia 32:827–846

    Article  PubMed  CAS  Google Scholar 

  • Hallett M, Berardelli A, Matheson J, Rothwell J, Marsden CD (1991) Physiological analysis of simple rapid movements in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry 53:124–133

    Article  Google Scholar 

  • Holmes G (1939) The cerebellum of man. The Hughlings Jackson memorial lecture. Brain 62:1–30

    Article  Google Scholar 

  • Hore J, Wild B, Diener HC (1991) Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol 65:563–571

    PubMed  CAS  Google Scholar 

  • Inhoff AW, Diener HC, Rafal RD, Ivry R (1989) The role of cerebellar structures in the execution of serial movements. Brain 112:565–581

    Article  PubMed  Google Scholar 

  • Ivry R (1997) Cerebellar timing systems. Int Rev Neurobiol 41:555–573

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reachig at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, pp 153–168

    Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    PubMed  CAS  Google Scholar 

  • Jeannerod M, Decety J, Michel F (1994) Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32:369–380

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod, M, Paulignan Y, Weiss P (1998) Grasping an object: one movement, several components. In: Bock GR, Goode JA (eds) Sensory guidance of movement. Wiley, Chichester, pp 5–20

    Chapter  Google Scholar 

  • Kargerer FA, Bracha V, Wunderlich DA, Stelmach GE, Bloedel JR (1998) Ataxia reflected in the simulated movements of patients with cerebellar lesions. Exp Brain Res 121:125–134

    Article  Google Scholar 

  • Lu X, Hikosaka O, Miyachi S (1998) Role of monkey cerebellar nuclei in skill for sequenctial movement. J Neurophysiol 79:2245–2254

    PubMed  CAS  Google Scholar 

  • Mai N, Bolsinger P, Avarello M, Diener HC, Dichgans J (1988) Control of isometric finger force in patients with cerebellar disease. Brain 111:973–998

    Article  PubMed  Google Scholar 

  • Marteniuk GG, Leavitt JL, MacKenzie CL, Athènes S (1990) Functional relationships between grasp and transport components in a prehension task. Hum Mov Sci 9:149–176

    Article  Google Scholar 

  • Massaquoi S, Hallett M (1996) Kinematics of initiating a two-joint arm movement in patients with cerebellar ataxia. Can J Neurol Sci 23:3–14

    PubMed  CAS  Google Scholar 

  • Milak MS, Shimansky Y, Bracha V, Bloedel JR (1997) Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol 78:939–959

    PubMed  CAS  Google Scholar 

  • Müller F, Dichgans J (1994) Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp Brain Res 101:485–492

    Article  PubMed  Google Scholar 

  • Paulignan Y, Jeannerod M, MacKenzie C, Marteniuk R (1991) Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res 87:407–420

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Frank VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234

    Article  PubMed  CAS  Google Scholar 

  • Rand MK, Wunderlich DA, Martin PE, Stelmach GE, Bloedel JR (1998) Adaptive changes in responses to repeated locomotor perturbations in cerebellar patients. Exp Brain Res 122:31–43

    Article  PubMed  CAS  Google Scholar 

  • Rand MK, Shimansky Y, Stelmach GE, Brach V, Bloedel JR (1999) Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients. Soc Neurosci Abstr 25:369

    Google Scholar 

  • Sakai K, Takino R, Hikosaka O, Miyauchi S, Sasaki Y, Pütz B, Fujimaki N (1998) Separate cerebellar areas for motor control. Neuroreport 9:2359–2363

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Takino R, Tamada T, Iwata NK, Nielsen M (1999) Neural representation of a rhythm depends on its interval ratio. J Neurosci 19:10074–10081

    PubMed  CAS  Google Scholar 

  • Saling M, Mescheriakov S, Molokanova E, Stelmach GE, Berger M (1996) Grip reorganization during wrist transport: the influence of an altered aperture. Exp Brain Res 108:493–500

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Soechting JF (1998) Gradual molding of the hand to object contours. J Neurophysiol 79:1307–1320

    PubMed  CAS  Google Scholar 

  • Serrien DJ, Wiesendanger M (1999) Role of the cerebellum in tuning anticipatory and reactive grip force responses. J Cogn Neurosci 11:672–681

    Article  PubMed  CAS  Google Scholar 

  • Shimansky Y, Saling M, Wunderlich DA, Bracha V, Stelmach GE, Bloedel JR (1997) Impaired capacity of cerebellar patients to perceive and learn two-dimensional shapes based on kinesthetic cues. Learn Mem 4:36–48

    Article  PubMed  CAS  Google Scholar 

  • Sivak B, MacKenzie CL (1990) Integration of visual information and motor output in reaching and grasping: the contributions of peripheral and central vision. Neuropsychologia 28:1095–1116

    Article  PubMed  CAS  Google Scholar 

  • Stelmach GE, Castiello U, Jeannerod M (1994) Orienting the finger opposition space during prehension movements. J Mot Behav 26:178–186

    PubMed  CAS  Google Scholar 

  • Takikawa Y, Kawagoe R, Miyashita N, Hikosaka O (1998) Presaccadic omnidirectional burst activity in the basal interstitial nucleus in the monkey cerebellum. Exp Brain Res 121:442–450

    Article  PubMed  CAS  Google Scholar 

  • Thach WT (1998) A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 70:177–188

    Article  PubMed  CAS  Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 15:403–442

    Article  PubMed  CAS  Google Scholar 

  • Thach WT, Perry JG, Kane SA, Goodkin HP (1993) Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy. Rev Neurol (Paris) 149:607–628

    CAS  Google Scholar 

  • Timmann D, Shimansky Y, Larson PS, Wunderlich DA, Stelmach GE, Bloedel JR (1996a) Visuomotor learning in cerebellar patients. Behav Brain Res 81:99–113

    Article  PubMed  CAS  Google Scholar 

  • Timmann D, Stelmach GE, Bloedel JR (1996b) Grasping component alterations and limb transport. Exp Brain Res 108:486–492

    Article  PubMed  CAS  Google Scholar 

  • Timmann D, Watts S, Hore J (1999) Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol 82:103–114

    PubMed  CAS  Google Scholar 

  • Topka H, Konczak J, Dichgans J (1998a) Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics. Exp Brain Res 119:483–492

    Article  PubMed  CAS  Google Scholar 

  • Topka H, Konczak J, Schneider K, Boose A, Dichgans J (1998b) Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res 119:493–503

    Article  PubMed  CAS  Google Scholar 

  • Trouche E, Beaubaton D (1980) Initiation of a goal-directed movement in the monkey. Role of the cerebellar dentate nucleus. Exp Brain Res 40:311–321

    CAS  Google Scholar 

  • Van Kan PLE, Houk JC, Gipson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69: 57–73

    PubMed  Google Scholar 

  • Van Kan PLE, Horn KM, Gibson AR (1994) The importance of hand use to discharge of interpositus output neurons of the monkey. J Physiol (Lond) 480:171–190

    Google Scholar 

  • Wallace SA, Weeks DL (1988) Temporal constraints in the control of prehensile movement. J Mot Behav 20:81–105

    PubMed  CAS  Google Scholar 

  • Wallace SA, Weeks DL, Kelso JAS (1990) Temporal constraints in reaching and grasping behavior. Hum Mov Sci 9:69–93

    Article  Google Scholar 

  • Wing AM, Turton A, Fraser C (1986) Grasp size and accuracy of approach in reaching. J Mot Behav 18:245–260

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Bloedel.

Additional information

Published online: 5 September 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, M.K., Shimansky, Y., Stelmach, G.E. et al. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients. Exp Brain Res 135, 179–188 (2000). https://doi.org/10.1007/s002210000528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002210000528

Key words

Navigation