Skip to main content
Log in

Interaction between attentional systems and episodic memory encoding: the impact of conflict on binding of information

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Episodic memory (EM) is defined as a long-term memory system that stores information that can be retrieved along with details of the context of the original events (binding). Several studies have shown that manipulation of attention during encoding can impact subsequent memory performance. An influential model of attention distinguishes between three partially independent attentional networks: the alerting, the orienting and the executive or conflict resolution component. To date, the impact of the engagement of these sub-systems during encoding on item and relational context binding has not been investigated. Here, we developed a new task combining the Attentional Network Test and an incidental episodic memory encoding task to study this issue. We reported that when the alerting network was not solicited, resolving conflict hindered item encoding. Moreover, resolving conflict, independently of the cueing condition, had a negative impact on context binding. These novel findings could have a potential impact in the understanding EM formation, and memory disorders in different populations, including healthy elderly people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams NC, Jarrold C (2012) Inhibition in autism: children with autism have difficulty inhibiting irrelevant distractors but not prepotent responses. J Autism Dev Disord 42(6):1052–1063

    Article  PubMed  Google Scholar 

  • Anderson ND, Iidaka T, Cabeza R, Kapur S, McIntosh AR, Craik FI (2000) The effects of divided attention on encoding-and retrieval-related brain activity: a PET study of younger and older adults. J Cogn Neurosci 12(5):775–792

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B (2014) lme4: linear mixed-effects models using Eigen and S4 (version 1.1-7). http://cran.r-project.org/web/packages/lme4/index.html

  • Casey BJ, Thomas KM, Welsh TF, Badgaiyan RD, Eccard CH, Jennings JR, Crone EA (2000) Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc Natl Acad Sci 97(15):8728–8733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chajut E, Schupak A, Algom D (2009) Are spatial and dimensional attention separate? Evidence from Posner, Stroop, and Eriksen tasks. Mem Cognit 37(6):924–934

    Article  PubMed  Google Scholar 

  • Chiu YC, Egner T (2015a) Inhibition-induced forgetting when more control leads to less memory. Psychol Sci 26(1):27–38

    Article  PubMed  Google Scholar 

  • Chiu YC, Egner T (2015b) Inhibition-induced forgetting results from resource competition between response inhibition and memory encoding processes. J Neurosci 35(34):11936–11945

    Article  CAS  PubMed  Google Scholar 

  • Craik FI, Lockhart RS (1972) Levels of processing: a framework for memory research. J Verbal Learn Verbal Behav 11(6):671–684

    Article  Google Scholar 

  • Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16(6):693–700

    Article  CAS  PubMed  Google Scholar 

  • Dulas MR, Duarte A (2014) Aging affects the interaction between attentional control and source memory: an fMRI study. J Cognit Neurosci 26(12):2653–2669

    Article  Google Scholar 

  • Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cognit Neurosci 14(3):340–347

    Article  Google Scholar 

  • Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26(2):471–479

    Article  PubMed  Google Scholar 

  • Fan J, Gu X, Guise KG, Liu X, Fossella J, Wang H, Posner MI (2009) Testing the behavioral interaction and integration of attentional networks. Brain Cogn 70(2):209–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazzaley A, D’Esposito MARK (2007) Top–down modulation and normal aging. Ann N Y Acad Sci 1097(1):67–83

    Article  PubMed  Google Scholar 

  • Janowsky JS, Shimamura AP, Squire LR (1989) Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27(8):1043–1056

    Article  CAS  PubMed  Google Scholar 

  • Kilb A, Naveh-Benjamin M (2007) Paying attention to binding: further studies assessing the role of reduced attentional resources in the associative deficit of older adults. Mem Cognit 35(5):1162–1174

    Article  PubMed  Google Scholar 

  • Krebs RM, Boehler CN, De Belder M, Egner T (2013) Neural conflict–control mechanisms improve memory for target stimuli. Cereb Cortex 25(3):833–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Meiser T, Sattler C, Weißer K (2008) Binding of multidimensional context information as a distinctive characteristic of remember judgments. J Exp Psychol Learn Mem Cogn 34(1):32

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin M, Guez J, Marom M (2003) The effects of divided attention at encoding on item and associative memory. Mem Cogn 31(7):1021–1035

    Article  Google Scholar 

  • Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7(1):1–17

    Article  PubMed  Google Scholar 

  • Pallier C (2002) Computing discriminability and bias with the R software. http://www.pallier.org/ressources/aprime/aprime. Accessed 12 June 2015

  • Park H, Leal F, Abellanoza C, Schaeffer JD (2014) The formation of source memory under distraction. Behav Brain Funct 10(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Peirce JW (2007) Psychopy–psychophysics software in Python. J Neurosci Methods 162(1):8–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Posner MI (2008) Measuring alertness. Ann N Y Acad Sci 1129(1):193–199

    Article  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  CAS  PubMed  Google Scholar 

  • Ranganath C (2010) Binding items and contexts the cognitive neuroscience of episodic memory. Curr Dir Psychol Sci 19(3):131–137

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. Manual. Vienna, Austria. http://www.r-project.org

  • Rosner TM, D’Angelo MC, MacLellan E, Milliken B (2015) Selective attention and recognition: effects of congruency on episodic learning. Psychol Res 79(3):411–424

    Article  PubMed  Google Scholar 

  • Sanderson C, Allen ML (2013) The specificity of inhibitory impairments in autism and their relation to ADHD-type symptoms. J Autism Dev Disord 43(5):1065–1079

    Article  PubMed  Google Scholar 

  • Sperduti M, Makowski D, Piolino P (2016) The protective role of long-term meditation on the decline of the executive component of attention in aging: a preliminary cross-sectional study. Aging Neuropsychol Cogn 23(6):691–702

    Article  Google Scholar 

  • Stanislaw H, Todorov N (1999) Calculation of signal detection theory measures. Behav Res Methods Instrum Comput 31(1):137–149

    Article  CAS  PubMed  Google Scholar 

  • Staresina BP, Davachi L (2008) Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding. J Cogn Neurosci 20(8):1478–1489

    Article  PubMed  PubMed Central  Google Scholar 

  • Staresina BP, Gray JC, Davachi L (2009) Event congruency enhances episodic memory encoding through semantic elaboration and relational binding. Cereb Cortex 19(5):1198–1207

    Article  PubMed  Google Scholar 

  • Stark SM, Yassa MA, Lacy JW, Stark CE (2013) A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment. Neuropsychologia 51(12):2442–2449

    Article  PubMed  PubMed Central  Google Scholar 

  • Summerfield C, Mangels JA (2006) Dissociable neural mechanisms for encoding predictable and unpredictable events. J Cogn Neurosci 18(7):1120–1132

    Article  PubMed  Google Scholar 

  • Summerfield C, Greene M, Wager T, Egner T, Hirsch J, Mangels J (2006) Neocortical connectivity during episodic memory formation. PLoS Biol 4(5):e128

    Article  PubMed  PubMed Central  Google Scholar 

  • Troyer AK, Winocur G, Craik FI, Moscovitch M (1999) Source memory and divided attention: reciprocal costs to primary and secondary tasks. Neuropsychology 13(4):467

    Article  CAS  PubMed  Google Scholar 

  • Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53(1):1–25

    Article  PubMed  Google Scholar 

  • Turk-Browne NB, Golomb JD, Chun MM (2013) Complementary attentional components of successful memory encoding. NeuroImage 66:553–562

    Article  PubMed  Google Scholar 

  • Uncapher M, Rugg M (2008) Fractionation of the component processes underlying successful episodic encoding: a combined fMRI and divided-attention study. J Cogn Neurosci 20(2):240–254

    Article  PubMed  Google Scholar 

  • Uncapher MR, Hutchinson JB, Wagner AD (2011) Dissociable effects of top–down and bottom–up attention during episodic encoding. J Neurosci 31(35):12613–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Honert RN, McCarthy G, Johnson MK (2017) Holistic versus feature-based binding in the medial temporal lobe. Cortex 91:56–66

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sperduti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperduti, M., Armougum, A., Makowski, D. et al. Interaction between attentional systems and episodic memory encoding: the impact of conflict on binding of information. Exp Brain Res 235, 3553–3560 (2017). https://doi.org/10.1007/s00221-017-5081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5081-6

Keywords

Navigation