Skip to main content
Log in

Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recent research has provided evidence that visual and body-based cues (vestibular, proprioceptive and efference copy) are integrated using a weighted linear sum during walking and passive transport. However, little is known about the specific weighting of visual information when combined with proprioceptive inputs alone, in the absence of vestibular information about forward self-motion. Therefore, in this study, participants walked in place on a stationary treadmill while dynamic visual information was updated in real time via a head-mounted display. The task required participants to travel a predefined distance and subsequently match this distance by adjusting an egocentric, in-depth target using a game controller. Travelled distance information was provided either through visual cues alone, proprioceptive cues alone or both cues combined. In the combined cue condition, the relationship between the two cues was manipulated by either changing the visual gain across trials (0.7×, 1.0×, 1.4×; Exp. 1) or the proprioceptive gain across trials (0.7×, 1.0×, 1.4×; Exp. 2). Results demonstrated an overall higher weighting of proprioception over vision. These weights were scaled, however, as a function of which sensory input provided more stable information across trials. Specifically, when visual gain was constantly manipulated, proprioceptive weights were higher than when proprioceptive gain was constantly manipulated. These results therefore reveal interesting characteristics of cue-weighting within the context of unfolding spatio-temporal cue dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baier B, Kleinschmidt A, Müller NG (2006) Cross-modal processing in early visual and auditory cortices depends on expected statistical relationship of multisensory information. J Neurosci 26(47):12260–12265

    Article  PubMed  CAS  Google Scholar 

  • Banton T, Stefanucci J, Durgin F, Fass A, Proffitt D (2005) The perception of walking speed in a virtual environment. Presence Teleop Virt Environ 14(4):394–406

    Article  Google Scholar 

  • Bles W (1981) Stepping around: circular vection and Coriolis effects. In: Long J, Baddeley A (eds) Attention and Performance IX. Erlbaum, Hillsdale, pp 47–61

    Google Scholar 

  • Bles W, Kapteyn TS (1977) Circular vection and human posture: I. Does the proprioceptive system play a role. Agressologie 18:325–328

    PubMed  CAS  Google Scholar 

  • Butler JS, Smith S, Campos JL, Bülthoff HH (2010) Bayesian integration of visual and vestibular signals for heading. J Vis 10(12):1–13

    Article  Google Scholar 

  • Butler JS, Campos JL, Bülthoff HH, Smith ST (2011) The role of stereo vision in visual–vestibular heading estimation. Seeing and Perceiving 24(5):453–470

    Article  PubMed  Google Scholar 

  • Campos JL, Bülthoff HH (2011) Multisensory integration during self-motion in virtual reality. In: Murray M, Wallace M (eds) Frontiers in the neural bases of multisensory processes. Taylor and Francis Group, London, pp 603–627

    Chapter  Google Scholar 

  • Campos JL, Byrne P, Sun HJ (2010) Body-based cues trump vision when estimating walked distance. Eur J Neurosci 31(10):1889–1898

    Article  PubMed  Google Scholar 

  • Campos JL, Butler JS, Bülthoff HH (2012) Multisensory integration in the estimation of walked distances. Exp Brain Res 218(4):551–565

    Article  PubMed  Google Scholar 

  • Chance SS, Gaunet F, Beall AC, Loomis JM (1998) Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence Teleop Virt Environ 7(2):168–178

    Article  Google Scholar 

  • Chen F, King JA, Burgess N, O’Keefe J (2013) How vision and movement combine in the hippocampal place code. PNAS 110(1):378–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Gelder B, Bertelson P (2003) Multisensory integration, perception and ecological validity. Trends Cog Sci 7(10):460–467

    Article  Google Scholar 

  • De Sanctis P, Butler JS, Green JM, Snyder AC, Foxe JJ (2012) Mobile brain/body imaging (MoBI): high-density electrical mapping of inhibitory processes during walking. Conf Proc IEEE Eng Med Biol Soc 2012:1542–1545. doi:10.1109/EMBC.2012.6346236

    PubMed  Google Scholar 

  • Durgin FH, Gigone K, Scott R (2005) The perception of visual speed while moving. J Exp Psychol Hum Percept Perform 31:339–353

    Article  PubMed  Google Scholar 

  • Durgin FH, Akagi M, Gallistel CR, Haiken W (2009) The precision of locomotor odometry in humans. Exp Brain Res 193(3):429–436

    Article  PubMed  Google Scholar 

  • Fetsch CR, DeAngelis GC, Angelaki DE (2010) Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory. Eur J Neurosci 31:1721–1729

    Article  PubMed  PubMed Central  Google Scholar 

  • Fetsch CF, DeAngelis GC, Angelaki DE (2013) Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat Rev Neurosci 14:429–442

    Article  PubMed  CAS  Google Scholar 

  • Frissen I, Campos JL, Souman JL, Ernst MO (2011) The relative contributions of proprioceptive and inertial information for self-motion perception. Exp Brain Res 212:163–176

    Article  PubMed  Google Scholar 

  • Frissen I, Campos JL, Sreenivasa M, Ernst MO (2013) Enabling unconstrained omnidirectional walking through virtual environments: an overview of the CyberWalk project. In: Steinicke F, Visell Y, Campos J, Lécuyer A (eds) Human walking in virtual environments. Perception, Technology and Application. Springer, New York, pp 113–144

    Chapter  Google Scholar 

  • Gepshtein S, Burge J, Ernst MO, Banks MS (2005) The combination of vision and touch depends on spatial proximity. J Vis 5(11):1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Glasauer S, Amorim MA, Vitte E, Berthoz A (1994) Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res 98:323–335

    Article  PubMed  CAS  Google Scholar 

  • Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145:489–497

    Article  PubMed  CAS  Google Scholar 

  • Gwin JT, Gramann K, Makeig S, Ferris DP (2011) Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage 54:1289–1296

    Article  PubMed  Google Scholar 

  • Harris LR, Jenkin M, Zikovitz DC (2000) Visual and non-visual cues in the perception of linear self-motion. Exp Brain Res 135:12–21

    Article  PubMed  CAS  Google Scholar 

  • Harris LR, Herpers R, Jenkin M, Allison RS, Jenkin H, Kapralos B, Scherfgen D, Felsner S (2012) The relative contributions of radial and laminar optic flow to the perception of linear self-motion. J Vis 12(10). doi:10.1167/12.10.7

  • Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic and cognitive information. Exp Brain Res 174:528–543

    Article  PubMed  Google Scholar 

  • Kearns MJ (2003) The roles of vision and body senses in a homing task: the visual environment matters. Dissertation, Brown University

  • Kearns MJ, Warren WH, Duchon AP, Tarr MJ (2002) Path integration from optic flow and body senses in a homing task. Perception 31:349–374

    Article  PubMed  Google Scholar 

  • Klatzky RL, Loomis JM, Beall AC, Chance SS, Golledge RG (1998) Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol Sci 9(4):293–298

    Article  Google Scholar 

  • Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180(1):35–48

    Article  PubMed  Google Scholar 

  • Loomis JM, Knapp JM (2003) Visual perception of egocentric distance in real and virtual environments. In: Hettinger LJ, Haas M (eds) Virtual and adaptive environments: applications, Implications and human performance issues. Erlbaum, Mahwah, pp 21–46

    Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (2001) Idiothetic navigation in humans: estimation of path length. Exp Brain Res 13:318–332

    Article  Google Scholar 

  • Mohler BJ, Thompson WB, Creem-Regehr SH, Pick HL, Warren WH (2007a) Visual flow influences gait transition speed and preferred walking speed. Exp Brain Res 181(2):221–228

    Article  PubMed  Google Scholar 

  • Mohler BJ, Thompson WB, Creem-Regehr SH, Willemsen P, Pick HL, Rieser JJ (2007b) Calibration of locomotion due to visual motion in a treadmill-based virtual environment. ACM Trans Appl Percept 4(1):20–32

    Article  Google Scholar 

  • Multon F, Olivier AH (2013) Biomechanics of walking in real world: naturalness we wish to reach in virtual reality. In: Steinicke F, Visell Y, Campos J, Lécuyer A (eds) Human walking in virtual environments. Perception, Technology, and Applications. Springer, New York, pp 55–77

    Chapter  Google Scholar 

  • Nolan H, Whelan R, Reilly RB, Bulthoff HH, Butler JS (2009) Acquisition of human EEG data during linear self-motion on a Stewart platform. In: 4th international IEEE/EMBS conference on neural engineering. Antalya, Turkey, pp 585–588

  • Nolan H, Butler JS, Whelan R, Foxe JJ, Bulthoff HH, Reilly RB (2012) Neural correlates of oddball detection in self-motion heading: a high-density event-related potential study of vestibular integration. Exp Brain Res 219:1–11. doi:10.1007/s00221-012-3059-y

    Article  PubMed  CAS  Google Scholar 

  • Proffitt DR, Stefanucci J, Banton T, Epstein W (2003) The role of effort in perceiving distance. Psychol Sci 14(2):106–112

    Article  PubMed  Google Scholar 

  • Prokop T, Schubert M, Berger W (1997) Visual influence on human locomotion. Exp Brain Res 114:63–70

    Article  PubMed  CAS  Google Scholar 

  • Prsa M, Gale S, Blanke O (2012) Self-motion leads to mandatory cue fusion across sensory modalities. J Neurophysiol 108:2282–2291

    Article  PubMed  Google Scholar 

  • Rushton SK, Harris JM, Lloyd MR, Wann JP (1998) Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr Biol 8(21):1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Souman JL, Frissen I, Sreenivasa M, Ernst MO (2009) Walking straight into circles. Curr Biol 19(18):1538–1542

    Article  PubMed  CAS  Google Scholar 

  • Steck K, Wittlinger M, Wolf H (2009) Estimation of homing distance in desert ants, Cataglyphis fortis, remains unaffected by disturbances of walking behaviour. J Exp Biol 212(18):2893–2901

    Article  PubMed  Google Scholar 

  • Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M (2010) Estimation of detection thresholds for redirected walking techniques. IEEE Trans Vis Comp Graph 16(1):17–27

    Article  Google Scholar 

  • Sun HJ, Lee AJ, Campos JL, Chan GSW, Zhang DH (2003) Multisensory integration in speed estimation during self-motion. Cyberpsychol Behav 6(5):509–518

    Article  PubMed  Google Scholar 

  • Sun HJ, Campos JL, Chan GSW (2004) Multisensory integration in the estimation of relative path length. Exp Brain Res 154(2):246–254

    Article  PubMed  Google Scholar 

  • Tcheang L, Bülthoff HH, Burgess N (2011) Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. PNAS 108(3):1152–1157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson WE, Willemsen P, Gooch AA, Creem-Regehr SH, Loomis JM, Beall AC (2004) Does the quality of computer graphics matter when judging distances in visually immersive environments? Presence 13(5):560–571

    Article  Google Scholar 

  • Triesch J, Ballard DH, Jacobs RA (2002) Fast temporal dynamics of visual cue integration. Perception 31:421–434

    Article  PubMed  Google Scholar 

  • Van Caekenberghe I, Segers V, Willems P, Gosseye T, Aerts P, De Clercq D (2013) Mechanics of overground accelerated running vs. running on an accelerated treadmill. Gait Post 38:125–131

    Article  Google Scholar 

  • Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4:213–216

    Article  PubMed  CAS  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967

    Article  PubMed  CAS  Google Scholar 

  • Wright WG, Agah MR, Darvish K, Keshner E (2013) Head stabilization shows visual and inertial dependence during passive stimulation: implications for virtual rehabilitation. IEEE Trans Neural Sys Rehab Eng 21(2):191–197

    Article  Google Scholar 

Download references

Acknowledgments

We thank Betty Mohler and Michael Weyel for their technical assistance and Simon Musall for his assistance in collecting the data. The research was supported by funding from the Max Planck Society and by the Brain Korea 21 PLUS Program through the National Research Foundation of Korea funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer L. Campos or Heinrich H. Bülthoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, J.L., Butler, J.S. & Bülthoff, H.H. Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies. Exp Brain Res 232, 3277–3289 (2014). https://doi.org/10.1007/s00221-014-4011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4011-0

Keywords

Navigation