Skip to main content
Log in

Kinematics fingerprints of leader and follower role-taking during cooperative joint actions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Performing online complementary motor adjustments is quintessential to joint actions since it allows interacting people to coordinate efficiently and achieve a common goal. We sought to determine whether, during dyadic interactions, signaling strategies and simulative processes are differentially implemented on the basis of the interactional role played by each partner. To this aim, we recorded the kinematics of the right hand of pairs of individuals who were asked to grasp as synchronously as possible a bottle-shaped object according to an imitative or complementary action schedule. Task requirements implied an asymmetric role assignment so that participants performed the task acting either as (1) Leader (i.e., receiving auditory information regarding the goal of the task with indications about where to grasp the object) or (2) Follower (i.e., receiving instructions to coordinate their movements with their partner’s by performing imitative or complementary actions). Results showed that, when acting as Leader, participants used signaling strategies to enhance the predictability of their movements. In particular, they selectively emphasized kinematic parameters and reduced movement variability to provide the partner with implicit cues regarding the action to be jointly performed. Thus, Leaders make their movements more “communicative” even when not explicitly instructed to do so. Moreover, only when acting in the role of Follower did participants tend to imitate the Leader, even in complementary actions where imitation is detrimental to joint performance. Our results show that mimicking and signaling are implemented in joint actions according to the interactional role of the agent, which in turn is reflected in the kinematics of each partner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11(9):1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Arbib MA (2005) From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav Brain Sci 28(2):105–167

    PubMed  Google Scholar 

  • Atmaca S, Sebanz N, Prinz W, Knoblich G (2008) Action co-representation: the joint SNARC effect. Soc Neurosci 3(3–4):410–420

    Article  PubMed  Google Scholar 

  • Atmaca S, Sebanz N, Knoblich G (2011) The joint flanker effect: sharing tasks with real and imagined co-actors. Exp Brain Res 211(3–4):371–385

    Article  PubMed  Google Scholar 

  • Becchio C, Sartori L, Bulgheroni M, Castiello U (2008a) The case of Dr. Jekyll and Mr. Hyde: a kinematic study on social intention. Conscious Cogn 17(3):557–564

    Article  PubMed  Google Scholar 

  • Becchio C, Sartori L, Bulgheroni M, Castiello U (2008b) Both your intention and mine are reflected in the kinematics of my reach-to-grasp movement. Cognition 106(2):894–912

    Article  PubMed  Google Scholar 

  • Becchio C, Sartori L, Castiello U (2010) Toward you: the social side of actions. Curr Dir Psychol Sci 19(3):183–188

    Article  Google Scholar 

  • Blakemore SJ, Frith C (2005) The role of motor contagion in the prediction of action. Neuropsychologia 43(2):260–267

    Article  PubMed  Google Scholar 

  • Brass M, Bekkering H, Wohlschläger A, Prinz W (2000) Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cogn 44(2):124–143

    Article  PubMed  CAS  Google Scholar 

  • Brennan SE, Hanna JE (2009) Partner-specific adaptation in dialog. Top Cogn Sci 1(2):274–291

    Article  Google Scholar 

  • Briggs GG, Nebes RD (1975) Patterns of hand preference in a student population. Cortex 11(3):230–238

    PubMed  CAS  Google Scholar 

  • Candidi M, Sacheli LM, Mega I, Aglioti SM (2012). Somatotopic mapping of piano fingering errors in sensorimotor experts: TMS studies in pianists and visually trained musically naïves. Cereb Cortex. doi:10.1093/cercor/bhs325 [Epub ahead of print]

  • Catmur C, Walsh V, Heyes C (2007) Sensorimotor learning configures the human mirror system. Curr Biol 17(17):1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Catmur C, Walsh V, Heyes C (2009) Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philos Trans R Soc Lond B Biol Sci 364(1528):2369–2380

    Article  PubMed  Google Scholar 

  • Clark HH (1996) Using language. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Clark HH (2002) Speaking in time. Speech Commun 36:5–13

    Article  Google Scholar 

  • Cook R, Bird G, Lünser G, Huck S, Heyes C (2012) Automatic imitation in a strategic context: players of rock–paper–scissors imitate opponents’ gestures. Proc Biol Sci 279(1729):780–786

    Article  PubMed  Google Scholar 

  • Csisbra G, Gergely G (2011) Natural pedagogy as evolutionary adaptation. Philos Trans R Soc Lond B Biol Sci 366(1567):1149–1157

    Article  Google Scholar 

  • di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    Article  PubMed  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667

    Article  PubMed  CAS  Google Scholar 

  • Galantucci B (2009) Experimental semiotics: a new approach for studying communication as a form of joint action. Top Cogn Sci 1:393–410

    Article  Google Scholar 

  • Garrod S, Pickering MJ (2009) Joint action, interactive alignment, and dialog. Top Cogn Sci 1(2):292–304

    Article  Google Scholar 

  • Georgiou I, Becchio C, Glover S, Castiello U (2007) Different action patterns for cooperative and competitive behaviour. Cognition 102(3):415–433

    Article  PubMed  Google Scholar 

  • Grush R (2004) The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci 27(3):377–442

    PubMed  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, pp 153–168

    Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    PubMed  CAS  Google Scholar 

  • Keller PE, Knoblich G, Repp BH (2007) Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious Cogn 16:102–111

    Article  PubMed  Google Scholar 

  • Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525

    Article  PubMed  CAS  Google Scholar 

  • Kilner JM, Vargas C, Duval S, Blakemore SJ, Sirigu A (2004) Motor activation prior to observation of a predicted movement. Nat Neurosci 7(12):1299–1301

    Article  PubMed  CAS  Google Scholar 

  • Knoblich G, Jordan JS (2003) Action coordination in groups and individuals: learning anticipatory control. J Exp Psychol Learn Mem Cogn 29(5):1006–1016

    Article  PubMed  Google Scholar 

  • Knoblich G, Butterfill S, Sebanz N (2011) Psychological research on joint action: theory and data. In: Ross B (ed) The psychology of learning and motivation. Academic Press, Burlington, pp 59–101

    Google Scholar 

  • Kokal I, Keysers C (2010) Granger causality mapping during joint actions reveals evidence for forward models that could overcome sensory-motor delays. PLoS One 5(10):e13507. doi:10.1371/journal.pone.0013507

    Article  PubMed  Google Scholar 

  • Kokal I, Gazzola V, Keysers C (2009) Acting together in and beyond the mirror neuron system. NeuroImage 47(4):2046–2056

    Article  PubMed  Google Scholar 

  • Konvalinka I, Vuust P, Roepstorff A, Frith CD (2010) Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q J Exp Psychol 63(11):2220–2230

    Article  Google Scholar 

  • Menenti L, Pichering MJ, Garrod SC (2012) Toward a neural basis of interactive alignment in conversation. Front Hum Neurosci 6:185

    Article  PubMed  Google Scholar 

  • Newman-Norlund RD, van Schie HT, van Zuijlen AM, Bekkering H (2007) The mirror neuron system is more active during complementary compared with imitative action. Nat Neurosci 10(7):817–818

    Article  PubMed  CAS  Google Scholar 

  • Noy L, Dekel E, Alon U (2011) The mirror game as a paradigm for studying the dynamics of two people improvising motion together. Proc Natl Acad Sci USA 108(52):20947–20952

    Article  PubMed  CAS  Google Scholar 

  • Ocampo B, Kritikos A (2010) Placing actions in context: motor facilitation following observation of identical and non-identical manual acts. Exp Brain Res 201(4):743–751

    Article  PubMed  Google Scholar 

  • Pezzulo G, Dindo H (2011) What should I do next? Using shared representations to solve interaction problems. Exp Brain Res 211(3–4):613–630

    Article  PubMed  Google Scholar 

  • Pezzulo G, Candidi M, Dindo H, Barca L (in press) Action simulation in the human brain: twelve questions. New Ideas Psychol

  • Pickering MJ, Garrod S (in press) An integrated theory of language production and comprehension. Behav Brain Sci (forthcoming)

  • Poljac E, van Schie HT, Bekkering H (2009) Understanding the flexibility of action–perception coupling. Psychol Res 73(4):578–586

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror–neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11(4):264–274

    Article  PubMed  CAS  Google Scholar 

  • Sacheli LM, Candidi M, Pavone EF, Tidoni E, Aglioti SM (2012) And yet they act together: interpersonal perception modulates predictive simulation and mutual adjustments during a joint-grasping task. PLoS One 7(11):e50223. doi:10.1371/journal.pone.0050223

    Article  PubMed  CAS  Google Scholar 

  • Sartori L, Becchio C, Bara BG, Castiello U (2009) Does the intention to communicate affect action kinematics? Conscious Cogn 18(3):766–772

    Article  PubMed  Google Scholar 

  • Sartori L, Cavallo A, Bucchioni G, Castiello U (2011) Corticospinal excitability is specifically modulated by the social dimension of observed actions. Exp Brain Res 211(3–4):557–568

    Article  PubMed  Google Scholar 

  • Sartori L, Bucchioni G, Castiello U (2012) When emulation becomes reciprocity. Soc Cogn Affect Neurosci. doi:10.1093/scan/nss044 [Epub ahead of print]

  • Schmidt RC, Fitzpatrick P, Caron R, Mergeche J (2011) Understanding social motor coordination. Hum Mov Sci 30(5):834–845

    Article  PubMed  CAS  Google Scholar 

  • Sebanz N, Knoblich G (2009) Prediction in joint action: what, when, and where. Top Cogn Sci 1(2):353–367

    Article  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W (2003) Representing others’ actions: just like one’s own? Cognition 88:11–21

    Article  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W (2005) How two share a task: corepresenting stimulus-response mappings. J Exp Psychol Hum Percept Perform 31(6):1234–1246

    Article  PubMed  Google Scholar 

  • Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trends Cogn Sci 10(2):70–76

    Article  PubMed  Google Scholar 

  • Sebanz N, Rebbechi D, Knoblich G, Prinz W, Frith CD (2007) Is it really my turn? An event-related fMRI study of task sharing. Soc Neurosci 2(2):81–95

    Article  PubMed  Google Scholar 

  • Stanley J, Miall RC (2009) Using predictive motor control processes in a cognitive task: behavioral and neuroanatomical perspectives. In: Sternad D (ed) Progress in motor control. Advances in experimental medicine and biology, vol 629, Part III. Springer, New York, pp. 337–357. doi:10.1007/978-0-387-77064-2_17

  • Tsai CC, Kuo WJ, Hung DL, Tzeng OJ (2008) Action co-representation is tuned to other humans. J Cogn Neurosci 20(11):2015–2024

    Article  PubMed  Google Scholar 

  • Urgesi C, Moro V, Candidi M, Aglioti SM (2006) Mapping implied body actions in the human motor system. J Neurosci 26(30):7942–7949

    Article  PubMed  CAS  Google Scholar 

  • van der Wel RP, Knoblich G, Sebanz N (2011) Let the force be with us: dyads exploit haptic coupling for coordination. J Exp Psychol Hum Percept Perform 37:1420–1431

    Article  PubMed  Google Scholar 

  • van Schie HT, van Waterschoot BM, Bekkering H (2008) Understanding action beyond imitation: reversed compatibility effects of action observation in imitation and joint action. J Exp Psychol Hum Percept Perform 34(6):1493–1500

    Article  PubMed  Google Scholar 

  • Vesper C, Butterfill S, Knoblich G, Sebanz N (2010) A minimal architecture for joint action. Neural Netw 23(8–9):998–1003

    Article  PubMed  Google Scholar 

  • Vesper C, van der Wel RP, Knoblich G, Sebanz N (2011) Making oneself predictable: reduced temporal variability facilitates joint action coordination. Exp Brain Res 211(3–4):517–530

    Article  PubMed  Google Scholar 

  • Vesper C, van der Wel RP, Knoblich G, Sebanz N (2013) Are you ready to jump? Predictive mechanisms in interpersonal coordination. J Exp Psychol Hum Percept Perform 39(1):48–61

    Article  PubMed  Google Scholar 

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358(1431):593–602

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

S.M.A. was funded by the Future and Emerging Technologies (FET) programme as part of FP7 of the European Commission, under FET-Open grant number: 249858, “Tango;” Istituto Italiano di Tecnologia (IIT) SEED (Prot. Num. 21538); and the Ministero Istruzione Università e Ricerca (PRIN 2009). M.C. was funded by Progetto di Ricerca 2011 University of Rome “Sapienza” (Prot. Num. C26A115CM5) and 2012 (Prot. Num. C26A122ZPS). L.M.S. was funded by Progetto di avvio alla ricerca 2012 University of Rome “Sapienza” (Prot. Num. C26N12SRA7).

Conflict of interest

  The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucia Maria Sacheli or Matteo Candidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacheli, L.M., Tidoni, E., Pavone, E.F. et al. Kinematics fingerprints of leader and follower role-taking during cooperative joint actions. Exp Brain Res 226, 473–486 (2013). https://doi.org/10.1007/s00221-013-3459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3459-7

Keywords

Navigation