Skip to main content
Log in

The effects of visual training on multisensory temporal processing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The importance of multisensory integration for human behavior and perception is well documented, as is the impact that temporal synchrony has on driving such integration. Thus, the more temporally coincident two sensory inputs from different modalities are, the more likely they will be perceptually bound. This temporal integration process is captured by the construct of the temporal binding window—the range of temporal offsets within which an individual is able to perceptually bind inputs across sensory modalities. Recent work has shown that this window is malleable and can be narrowed via a multisensory perceptual feedback training process. In the current study, we seek to extend this by examining the malleability of the multisensory temporal binding window through changes in unisensory experience. Specifically, we measured the ability of visual perceptual feedback training to induce changes in the multisensory temporal binding window. Visual perceptual training with feedback successfully improved temporal visual processing, and more importantly, this visual training increased the temporal precision across modalities, which manifested as a narrowing of the multisensory temporal binding window. These results are the first to establish the ability of unisensory temporal training to modulate multisensory temporal processes, findings that can provide mechanistic insights into multisensory integration and which may have a host of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adini Y, Sagi D, Tsodyks M (2002) Context-enabled learning in the human visual system. Nature 415:790–793

    Article  PubMed  Google Scholar 

  • Alais D, Cass J (2010) Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition. PLoS ONE 5:e11283

    Article  PubMed  Google Scholar 

  • Andersen TS, Tiippana K, Sams M (2004) Factors influencing audiovisual fission and fusion illusions. Brain Res Cogn Brain Res 21:301–308

    Article  PubMed  Google Scholar 

  • Bastien-Toniazzo M, Stroumza A, Cavé C (2009) Audio-visual perception and integration in developmental dyslexia: An exploratory study using the McGurk effect. Current Psychol Lett 25

  • Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, Barthelemy C, Mouren MC, Artiges E, Samson Y, Brunelle F, Frackowiak RS, Zilbovicius M (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369

    Article  CAS  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  • Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009

    Article  PubMed  Google Scholar 

  • Conrey BL, Pisoni DB (2004) Detection of auditory-visual asynchrony in speech and nonspeech signals. In: Pisoni DB (ed) Research on spoken language processing, vol 26. Indiana University, Bloomington, pp 71–94

    Google Scholar 

  • Conrey B, Pisoni DB (2006) Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. J Acoust Soc Am 119:4065–4073

    Article  PubMed  Google Scholar 

  • Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66:1388–1404

    Article  PubMed  Google Scholar 

  • Dixon NF, Spitz L (1980) The detection of auditory visual desynchrony. Perception 9:719–721

    Article  CAS  PubMed  Google Scholar 

  • Foss-Feig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res 203:381–389

    Article  PubMed  Google Scholar 

  • Foucher JR, Lacambre M, Pham BT, Giersch A, Elliott MA (2007) Low time resolution in schizophrenia Lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophr Res 97:118–127

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773–778

    Article  CAS  PubMed  Google Scholar 

  • Gervais H, Belin P, Boddaert N, Leboyer M, Coez A, Sfaello I, Barthelemy C, Brunelle F, Samson Y, Zilbovicius M (2004) Abnormal cortical voice processing in autism. Nat Neurosci 7:801–802

    Article  CAS  PubMed  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:179–325

    Article  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423:52–77

    Article  CAS  PubMed  Google Scholar 

  • Hairston WD, Burdette JH, Flowers DL, Wood FB, Wallace MT (2005) Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp Brain Res 166:474–480

    Article  PubMed  Google Scholar 

  • Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293

    Article  CAS  PubMed  Google Scholar 

  • Hillock AR, Powers AR, Wallace MT (2011) Binding of sights and sounds: age-related changes in multisensory temporal processing. Neuropsychologia 49:461–467

    Article  PubMed  Google Scholar 

  • James TW, Stevenson RA, Kim S (2012) Inverse effectiveness in multisensory processing. In: Stein BE (ed) The new handbook of multisensory processes. MIT Press, Cambridge, MA

    Google Scholar 

  • Keetels M, Vroomen J (2005) The role of spatial disparity and hemifields in audio-visual temporal order judgments. Exp Brain Res 167:635–640

    Article  PubMed  Google Scholar 

  • Kim RS, Seitz AR, Shams L (2008) Benefits of stimulus congruency for multisensory facilitation of visual learning. PLoS ONE 3:e1532

    Article  PubMed  Google Scholar 

  • Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL, Wallace MT (2011) Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci 4:129

    Article  PubMed  Google Scholar 

  • Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW (2003) Cortical sulcal maps in autism. Cereb Cortex 13:728–735

    Article  PubMed  Google Scholar 

  • Lovelace CT, Stein BE, Wallace MT (2003) An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Brain Res Cogn Brain Res 17:447–453

    Article  PubMed  Google Scholar 

  • Macaluso E, George N, Dolan R, Spence C, Driver J (2004) Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage 21:725–732

    Article  CAS  PubMed  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Stein BE (1986a) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365:350–354

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Stein BE (1986b) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662

    CAS  PubMed  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229

    CAS  PubMed  Google Scholar 

  • Miller LM, D’Esposito M (2005) Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J Neurosci 25:5884–5893

    Article  CAS  PubMed  Google Scholar 

  • Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Brain Res Cogn Brain Res 25:499–507

    Article  PubMed  Google Scholar 

  • Nelson WT, Hettinger LJ, Cunningham JA, Brickman BJ, Haas MW, McKinley RL (1998) Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Hum Factors 40:452–460

    Article  CAS  PubMed  Google Scholar 

  • Pekkola J, Laasonen M, Ojanen V, Autti T, Jaaskelainen IP, Kujala T, Sams M (2006) Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T. Neuroimage 29:797–807

    Article  PubMed  Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    Article  CAS  PubMed  Google Scholar 

  • Pelphrey KA, Carter EJ (2008a) Brain mechanisms for social perception: lessons from autism and typical development. Ann N Y Acad Sci 1145:283–299

    Article  PubMed  Google Scholar 

  • Pelphrey KA, Carter EJ (2008b) Charting the typical and atypical development of the social brain. Dev Psychopathol 20:1081–1102

    Article  PubMed  Google Scholar 

  • Pöppel E, Schill K, von Steinbüchel N (1990) Sensory integration within temporally neutral systems states: a hypothesis. Naturwissenschaften 77:89–91

    Article  PubMed  Google Scholar 

  • Powers AR 3rd, Hillock AR, Wallace MT (2009) Perceptual training narrows the temporal window of multisensory binding. J Neurosci 29:12265–12274

    Article  CAS  PubMed  Google Scholar 

  • Powers AR 3rd, Hevey MA, Wallace MT (2012) Neural correlates of multisensory perceptual learning. J Neurosci 32:6263–6274

    Article  CAS  PubMed  Google Scholar 

  • Richards T, Stevenson J, Crouch J, Johnson LC, Maravilla K, Stock P, Abbott R, Berninger V (2008) Tract-based spatial statistics of diffusion tensor imaging in adults with dyslexia. AJNR Am J Neuroradiol 29:1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Roach NW, Heron J, Whitaker D, McGraw PV (2011) Asynchrony adaption reveals neural population code for audio-visual timing. Proc R Soc 278:9

    Article  Google Scholar 

  • Royal DW, Carriere BN, Wallace MT (2009) Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions. Exp Brain Res 198:127–136

    Article  PubMed  Google Scholar 

  • Schall S, Quigley C, Onat S, Konig P (2009) Visual stimulus locking of EEG is modulated by temporal congruency of auditory stimuli. Exp Brain Res 198:137–151

    Article  PubMed  Google Scholar 

  • Seitz AR, Nanez JE Sr, Holloway SR, Watanabe T (2006) Perceptual learning of motion leads to faster flicker perception. PLoS ONE 1:e28

    Article  PubMed  Google Scholar 

  • Senkowski D, Talsma D, Grigutsch M, Herrmann CS, Woldorff MG (2007) Good times for multisensory integration: effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45:561–571

    Article  PubMed  Google Scholar 

  • Shams L, Kamitani Y, Shimojo S (2000) Illusions. What you see is what you hear. Nature 408:788

    Article  CAS  PubMed  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  CAS  PubMed  Google Scholar 

  • Spence C (2007) Audiovisual multisensory integration. Acoustics Sci Technol 28:61–70

    Article  Google Scholar 

  • Stein B, Meredith MA (1993) The merging of the senses. MIT Press, Boston, MA

    Google Scholar 

  • Stein BE, Wallace MT (1996) Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res 112:289–299

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RA, James TW (2009) Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 44:1210–1223

    Article  PubMed  Google Scholar 

  • Stevenson RA, Wallace MW (under review) Multisensory temporal integration: task and stimulus dependencies Exp Brain Res

  • Stevenson RA, Altieri NA, Kim S, Pisoni DB, James TW (2010) Neural processing of asynchronous audiovisual speech perception. Neuroimage 49:3308–3318

    Article  PubMed  Google Scholar 

  • Stevenson RA, VanDerKlok RM, Pisoni DB, James TW (2011) Discrete neural substrates underlie complementary audiovisual speech integration processes. Neuroimage 55:1339–1345

    Article  PubMed  Google Scholar 

  • Stevenson RA, Zemtsov RK, Wallace MT (2012) Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J Exp Psychol Hum Percept Perform 38:1517–1529

    Google Scholar 

  • Talsma D, Senkowski D, Woldorff MG (2009) Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Exp Brain Res 198:313–328

    Article  PubMed  Google Scholar 

  • van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17:962–974

    Article  PubMed  Google Scholar 

  • van Eijk RL, Kohlrausch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968

    Article  PubMed  Google Scholar 

  • van Wassenhove V, Grant KW, Poeppel D (2007) Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45:598–607

    Article  PubMed  Google Scholar 

  • Vatakis A, Spence C (2006) Audiovisual synchrony perception for music, speech, and object actions. Brain Res 1111:134–142

    Article  CAS  PubMed  Google Scholar 

  • Vatakis A, Spence C (2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756

    Article  PubMed  Google Scholar 

  • Vatakis A, Navarra J, Soto-Faraco S, Spence C (2007) Temporal recalibration during asynchronous audiovisual speech perception. Exp Brain Res 181:173–181

    Article  PubMed  Google Scholar 

  • Vatakis A, Ghazanfar AA, Spence C (2008) Facilitation of multisensory integration by the “unity effect” reveals that speech is special. J Vis 8(14):1–11

    Google Scholar 

  • Vroomen J, Baart M (2009) Phonetic recalibration only occurs in speech mode. Cognition 110:254–259

    Article  PubMed  Google Scholar 

  • Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res 22:32–35

    Article  PubMed  Google Scholar 

  • Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004) Unifying multisensory signals across time and space. Exp Brain Res 158:252–258

    Article  CAS  PubMed  Google Scholar 

  • Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol B 51:97–120

    CAS  PubMed  Google Scholar 

  • Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zampini M, Guest S, Shore DI, Spence C (2005) Audio-visual simultaneity judgments. Percept Psychophys 67:531–544

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors RAS and MMW contributed equally to this publication. Funding for this work was provided by National Institutes of Health F32 DC011993, Multisensory Integration and Temporal Processing in ASD, National Institutes of Health R34 DC010927, Evaluation of Sensory Integration Treatment in ASD, the Vanderbilt Brain Institute, and the Vanderbilt Kennedy Center. We also acknowledge the help of Zachary Barnett for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan A. Stevenson.

Additional information

Ryan A. Stevenson, Magdalena M. Wilson contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, R.A., Wilson, M.M., Powers, A.R. et al. The effects of visual training on multisensory temporal processing. Exp Brain Res 225, 479–489 (2013). https://doi.org/10.1007/s00221-012-3387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3387-y

Keywords

Navigation