Skip to main content
Log in

Grab an object with a tool and change your body: tool-use-dependent changes of body representation for action

  • Research Report
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Along the evolutionary history, humans have reached a high level of sophistication in the way they interact with the environment. One important step in this process has been the introduction of tools, enabling humans to go beyond the boundaries of their physical possibilities. Here, we focus on some “low level” aspects of sensorimotor processing that highlight how tool-use plays a causal role in shaping body representations, an essential plastic feature for efficient motor control during development and skilful tool-use in the adult life. We assess the evidence supporting the hypothesis that tools are incorporated in body representation for action, which is the body schema, by critically reviewing some previous findings and providing new data from on-going work in our laboratory. In particular, we discuss several experiments that reveal the effects of tool-use both on the kinematics of hand movements and the localization of somatosensory stimuli on the body surface, as well as the conditions that are necessary for these effects to be manifested. We suggest that overall these findings speak in favour of genuine tool-use-dependent plasticity of the body representation for the control of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arbib MA, Bonaiuto JB, Jacobs S, Frey S (2009) Tool use and the distalization of the end-effector. Psychol Res 73(4):441–462

    Article  PubMed  Google Scholar 

  • Beck B (1980) Animal tool behavior: the use and manufacture of tools by animals. Garland STPM Press, New York

    Google Scholar 

  • Berti A, Frassinetti F (2000) When far becomes near: remapping of space by tool use. J Cogn Neurosci 12(3):415–420

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans A (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 92(24):11180–11184

    Article  PubMed  CAS  Google Scholar 

  • Brown LE, Doole R, Malfait N (2011) The role of motor learning in spatial adaptation near a tool. PLoS ONE 6:e28999. doi:10.1371/journal.pone.0028999

    Article  PubMed  CAS  Google Scholar 

  • Brozzoli C, Gentile G, Petkova V, Ehrsson H (2011) fMRI adaptation reveals a cortical mechanism for the coding of space near the hand. J Neurosci 31(24):9023–9031

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum LJ, Giovannetti T, Libon D (2000) The role of the dynamic body schema in praxis: evidence from primary progressive apraxia. Brain Cogn 44(2):166–191

    Article  PubMed  CAS  Google Scholar 

  • Cardinali L, Brozzoli C, Farnè A (2009a) Peripersonal space and body schema: two labels for the same concept? Brain Topogr 21(3–4):252–260

    Article  PubMed  Google Scholar 

  • Cardinali L, Frassinetti F, Brozzoli C, Urquizar C, Roy A, Farnè A (2009b) Tool-use induces morphological updating of the body schema. Current Biol 19(12):R478–R479

    Google Scholar 

  • Cardinali L, Brozzoli C, Urquizar C, Salemme R, Roy AC, Farnè A (2011) When action is not enough: tool-use reveals tactile-dependent access to Body Schema. Neuropsychologia 49(13):3750–3757. doi:10.1016/j.neuropsychologia.2011.09.033

    Google Scholar 

  • Chieffi S, Gentilucci M (1993) Coordination between the transport and the grasp components during prehension movements. Exp Brain Res 94:471–477

    Article  PubMed  CAS  Google Scholar 

  • Coello Y, Bartolo A, Amiri B, Devanne H, Houdayer E, Derambure P, Robertson E (2008) Perceiving what is reachable depends on motor representations: evidence from a transcranial magnetic stimulation study. PLoS ONE 3(8):e2862

    Article  PubMed  Google Scholar 

  • Corradi-Dell’acqua C, Tomasino B, Fink G (2009) What is the position of an arm relative to the body? Neural correlates of Body Schema and body structural description. J Neurosci 29(13):4162–4171

    Article  PubMed  Google Scholar 

  • Costantini M, Ambrosini E, Sinigaglia C, Gallese V (2011) Tool-use observation makes far objects ready-to-hand. Neuropsychologia 49:2658–2663. doi:10.1016/j.neuropsychologia.2011.05.013

    Google Scholar 

  • de Vignemont F (2010) Body schema and body image—pros and cons. Neuropsychologia 48(3):669–680

    Article  PubMed  Google Scholar 

  • di Pellegrino G, Làdavas E, Farnè A (1997) Seeing where your hands are. Nature 388(6644):730

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931. doi:10.1523/JNEUROSCI.1874-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Dijkerman H, De Haan E (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30(02):189

    Article  PubMed  Google Scholar 

  • Farnè A, Làdavas E (2002) Auditory peripersonal space in humans. J Cogn Neurosci 14:1030–1043. doi:10.1162/089892902320474481

    Article  PubMed  Google Scholar 

  • Farnè A, Pavani F, Meneghello F, Làdavas E (2000) Left tactile extinction following visual stimulation of a rubber hand. Brain 123(Pt 11):2350–2360

    Article  PubMed  Google Scholar 

  • Farnè A, Iriki A, Làdavas E (2005) Shaping multisensory action-space with tools: evidence from patients with cross-modal extinction. Neuropsychologia 43(2):238–248

    Article  PubMed  Google Scholar 

  • Farnè A, Serino A, Làdavas E (2007) Dynamic size-change of peri-hand space following tool-use: determinants and spatial characteristics revealed through cross-modal extinction. CORTEX 43:436–443

    Article  PubMed  Google Scholar 

  • Ferri F, Frassinetti F, Costantini M, Gallese V (2011) Motor simulation and the bodily self. PLoS ONE 6(3):e17927. doi:10.1371/journal.pone.0017927

    Article  PubMed  CAS  Google Scholar 

  • Fourneret P, Jeannerod M (1998) Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Gallivan J, Cavina-Pratesi C, Culham JC (2009) Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. J Neurosci 29(14):4381–4391

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Chieffi S, Scarpa M, Castiello U (1992) Temporal coupling between transport and grasp components during prehension movements: effects of visual perturbation. Behav Brain Res 47(1):71–82

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Roy A, Stefanini S (2004) Grasping an object naturally or with a tool: are these tasks guided by a common motor representation? Exp Brain Res 157:1–11. doi:10.1007/s00221-004-1863-8

    Article  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4(7):604–610

    Article  PubMed  CAS  Google Scholar 

  • Greenwald AG (1970) Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol Rev 77:73–99

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313

    Article  PubMed  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34(2–3):102

    Article  Google Scholar 

  • Hermsdörfer J, Terlinden G, Mühlau M, Goldenberg G, Wohlschläger AM (2007) Neural representations of pantomimed and actual tool use: evidence from an event-related fMRI study. NeuroImage 36(Suppl 2):T109–T118

    Google Scholar 

  • Holmes N, Sanabria D, Calvert G, Spence C (2007) Tool-use: capturing multisensory spatial attention or extending multisensory peripersonal space? Cortex 43(3):469–489

    Article  PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878 (discussion 878–937)

    Google Scholar 

  • Imazu S, Sugio T, Tanaka S, Inui T (2007) Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43(3):301–307

    Article  PubMed  Google Scholar 

  • Inoue K, Kawashima R, Sugiura M, Ogawa A, Schormann T, Zilles K, Fukuda H (2001) Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14(6):1469–1475

    Article  PubMed  CAS  Google Scholar 

  • Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7(14):2325–2330

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi H, Hihara S, Iriki A (2000) Acquisition and development of monkey tool-use: behavioral and kinematic analyses. Can J Physiol Pharmacol 78(11):958–966

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Bussel B, Combeaud M, Roby-Brami A (2009) The use of a tool requires its incorporation into the movement: evidence from stick-pointing in apraxia. Cortex 45(4):444–455

    Article  PubMed  Google Scholar 

  • Jacobs S, Danielmeier C, Frey SH (2010) Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cogn Neurosci 22(11):2594–2608. doi:10.1162/jocn.2009.21372

    Article  PubMed  Google Scholar 

  • Jacobs S, Brozzoli C, Hadj-Bouziane F, Meunier M, Farnè A (2011) Studying multisensory processing and its role in the representation of space through pathological and physiological crossmodal extinction. Front Psychol 2:1–9

    Article  Google Scholar 

  • James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126(Pt 11):2463–2475

    Article  PubMed  Google Scholar 

  • Johnson SH (2000) Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cognition 74(1):33–70

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey S (2003a) What’s so special about human tool use? Neuron 39(2):201–204

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey SH (2003b) What’s so special about human tool use? Neuron 39:201–204

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey S (2004) The neural bases of complex tool use in humans. Trends Cogn Sci 8(2):71–78

    Article  PubMed  Google Scholar 

  • Kammers MP, de Vignemont F, Verhagen L, Dijkerman HC (2009) The rubber hand illusion in action. Neuropsychologia 47(1):204–211

    Article  PubMed  CAS  Google Scholar 

  • Kammers M, Kootker J, Hogendoorn H, Dijkerman H (2010) How many motoric body representations can we grasp? Exp Brain Res 202(1):203–212

    Article  PubMed  Google Scholar 

  • Kudoh N, Hattori M, Numata N, Maruyama K (1997) An analysis of spatiotemporal variability during prehension movements: effects of object size and distance. Exp Brain Res 117(3):457–464

    Article  PubMed  CAS  Google Scholar 

  • Ladwig S, Sutter C, Müsseler J (2012) Crosstalk between proximal and distal action effects during tool use. Zeitschrift für Psychologie/Journal of Psychology 220:10–15

    Article  Google Scholar 

  • Lewis JW (2006) Cortical networks related to human use of tools. Neuroscientist 12(3):211–231

    Article  PubMed  Google Scholar 

  • Lindshield S, Rodrigues M (2009) Tool use in wild spider monkeys (Ateles geoffroyi). Primates 50(3):269–272

    Article  PubMed  Google Scholar 

  • Longo MR, Haggard P (2010) An implicit body representation underlying human position sense. Proc Natl Acad Sci USA 107(26):11727–11732

    Article  PubMed  CAS  Google Scholar 

  • Macellini S, Maranesi M, Bonini L, Simone L, Rozzi S, Ferrari PF, Fogassi L (2012) Individual and social learning processes involved in the acquisition and generalization of tool use in macaques. Philos Trans R Soc B-Biol Sci 367(1585):24–36

    Article  CAS  Google Scholar 

  • Maravita A, Husain M, Clarke K, Driver J (2001) Reaching with a tool extends visual-tactile interactions into far space: evidence from cross-modal extinction. Neuropsychologia 39(6):580–585

    Article  PubMed  CAS  Google Scholar 

  • Maravita A, Clarke K, Husain M, Driver J (2002a) Active tool use with the contralesional hand can reduce cross-modal extinction of touch on that hand. Neurocase 8(6):411–416

    Article  PubMed  Google Scholar 

  • Maravita A, Spence C, Kennett S, Driver J (2002b) Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 83(2):B25–B34

    Google Scholar 

  • Massen C, Prinz W (2009) Movements, actions and tool-use actions: an ideomotor approach to imitation. Philos Trans R Soc Lond B Biol Sci 364:2349–2358. doi:10.1098/rstb.2009.0059

    Article  PubMed  Google Scholar 

  • McCormack T, Hoerl C, Butterfill S (2011) Tool use and causal cognition. Oxford University Press, USA

    Book  Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38(4):871–908

    PubMed  CAS  Google Scholar 

  • Newport R, Pearce R, Preston C (2010) Fake hands in action: embodiment and control of supernumerary limbs. Exp Brain Res 204(3):385–395

    Article  PubMed  Google Scholar 

  • Obayashi S, Suhara T, Kawabe K, Okauchi T, Maeda J, Akine Y, Onoe H, Iriki A (2001) Functional brain mapping of monkey tool use. NeuroImage 14(4):853–861. doi:10.1006/nimg.2001.0878

    Article  PubMed  CAS  Google Scholar 

  • Ostry DJ, Darainy M, Mattar AAG et al (2010) Somatosensory plasticity and motor learning. J Neurosci 30:5384–5393. doi:10.1523/JNEUROSCI.4571-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Paillard J (1999) Body schema and body image—a double dissociation in deafferented patients. In: Gantchev GN, Mori S, Massion J (eds) Motor control, today and tomorrow. Academic publishing house, Sophia, pp 197–214

  • Parkinson A, Condon L, Jackson SR (2010) Parietal cortex coding of limb posture: in search of the body-schema. Neuropsychologia 48(11):3228–3234. doi:10.1016/j.neuropsychologia.2010.06.039

    Article  PubMed  Google Scholar 

  • Parsons LM (1987) Imagined spatial transformation of one’s body. J Exp Psychol Gen 116(2):172–191

    Article  PubMed  CAS  Google Scholar 

  • Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375(6526):54–58. doi:10.1038/375054a0

    Article  PubMed  CAS  Google Scholar 

  • Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: an event-related fMRI study. Neuropsychologia 44(13):2685–2690

    Article  PubMed  Google Scholar 

  • Povinelli DJ, Reaux JE, Frey SH (2010) Chimpanzees’ context-dependent tool use provides evidence for separable representations of hand and tool even during active use within peripersonal space. Neuropsychologia 48(1):243–247

    Article  PubMed  Google Scholar 

  • Rieger M, Knoblich G, Prinz W (2005) Compensation for and adaptation to changes in the environment. Exp Brain Res 163:487–502. doi:10.1007/s00221-004-2203-8

    Article  PubMed  Google Scholar 

  • Rossetti Y, Rode G, Boisson D (1995) Implicit processing of somaesthetic information: a dissociation between where and how? NeuroReport 6(3):506–510

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Rode G, Boisson D (2001) Numbsense: a case study and implications. In: De Gelder B, De Haan E, Heywood C (eds) Out of mind: varieties of unconscious processing. Oxford University Press, Oxford, pp 265–292

  • Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102

    Article  PubMed  CAS  Google Scholar 

  • Schwoebel J, Buxbaum LJ, Coslett HB (2004) Representations of the human body in the production and imitation of complex movements. Cogn Neuropsychol 21(2):285–298

    Article  PubMed  Google Scholar 

  • Serino A, Bassolino M, Farnè A, Làdavas E (2007) Extended multisensory space in blind cane users. Psychol Sci 18(7):642–648

    Article  PubMed  Google Scholar 

  • Sutter C, Müsseler J, Bardos L, Ballagas R, Borchers J (2008) The impact of gain change on perceiving one’s own actions. In: Herczeg M, Kindsmüller MC (eds) Mensch & computer. Oldenbourg Wissenschaftsverlag, Munic, pp 147–156

    Chapter  Google Scholar 

  • Takahashi C, Diedrichsen J, Watt SJ (2009) Integration of vision and haptics during tool use. JOV 9(3):1–13. doi:10.1167/9.6.3

    Article  Google Scholar 

  • Tsuda H, Aoki T, Oku N, Kimura Y, Hatazawa J, Kinoshita H (2009) Functional brain areas associated with manipulation of a prehensile tool: a PET study. Hum Brain Mapp 30(9):2879–2889. doi:10.1002/hbm.20715

    Article  PubMed  Google Scholar 

  • van der Steen MC, Bongers RM (2011) Joint angle variability and co-variation in a reaching with a rod task. Exp Brain Res 208(3):411–422

    Article  PubMed  Google Scholar 

  • Witt J, Proffitt DR, Epstein W (2005) Tool use affects perceived distance, but only when you intend to use it. J Exp Psychol 31(5):880–888

    Google Scholar 

  • Wolpert DM, Flanagan JR (2010) Motor learning. Curr Biol 20:R467–R472. doi:10.1016/j.cub.2010.04.035

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1(6):529–533

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by INSERM, the AVENIR grant No. R05265CS, the ANR grant No. RPV08085CSA, the James S. McDonnell Scholar Award and the Fédération des Aveugles et Handicapés Visuels de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucilla Cardinali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinali, L., Jacobs, S., Brozzoli, C. et al. Grab an object with a tool and change your body: tool-use-dependent changes of body representation for action. Exp Brain Res 218, 259–271 (2012). https://doi.org/10.1007/s00221-012-3028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3028-5

Keywords

Navigation