Skip to main content
Log in

Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

An experiment was conducted to determine whether multi-frequency continuous bimanual circling movements of varying difficulty (1:2. 2:3, 3:4, and 4:5) could be effectively performed following relatively little practice when on-line continuous relative velocity feedback is provided. The between-subjects results indicate extremely effective bimanual multi-frequency performance for all coordination patterns with relatively stable and continuous movements of both limbs. The findings suggest that the previous performance effects using Lissajous feedback with reciprocal movement can be extended to circling movements using on-line relative velocity feedback. Contrary to the long-held position that these coordination patterns result in increasing difficulty, we failed to find systematic relative velocity error, variability, or bias differences between the participants performing the various multi-frequency coordination patterns. Indeed, coordination error, variability, and biases were remarkably low for each of the tasks. The results clearly indicate the ease with which participants are able to produce bimanual coordination patterns typically considered difficult if not impossible when salient visual information is provided that allows the participants to detect and correct their coordination errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Comparisons across limbs of the variability of the cycle duration means should be viewed with caution because in all subjects and all conditions the left limb was moving slower than the right limb to achieve the desired frequencies. Thus, if the variability results were expressed in relation to cycle duration (coefficient of variation), the differences could disappear or even reverse.

References

  • Amazeen EL, DaSilva F, Amazeen PG (2008) Visual-spatial and anatomical constraints interact in a bimanual coordination task with transformed visual feedback. Exp Brain Res 191:12–24

    Article  Google Scholar 

  • Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer, NY

    Google Scholar 

  • Atchy-Dalama P, Peper CE, Zanone PG, Beek PJ (2005) Movement-related sensory feedback mediates the learning of a new bimanual relative phase pattern. J Mot Behav 37:186–196

    Article  PubMed  CAS  Google Scholar 

  • Bingham GP (2004a) A perceptually driven dynamical model of bimanual rhythmic movement (and phase perception). Ecol Psychol 16:45–53

    Article  Google Scholar 

  • Bingham GP (2004b) Another timing variable composted of state variables: phase perception and phase driven oscillators. In: Hecht H, Savelsbergh GIP (eds) Advances in psychology time to contact. Elsevier, Amsterdam, pp 421–442

    Chapter  Google Scholar 

  • Bingham GP, Schmidt RC, Zaal FTJM (1999) Visual perception of relative phasing in human limb movements. Percept Psychophys 61:246–258

    Article  PubMed  CAS  Google Scholar 

  • Boyle JB, Shea CH (2011) Arm and wrist control: extended practice fitts’ task. J Sport Exerc Psych 33:S100

    Google Scholar 

  • Byblow WD, Goodman D (1994) Performance asymmetries in multifrequency coordination. Hum Move Sci 13:147–174

    Article  Google Scholar 

  • Carson RG, Kelso JAS (2004) Governing coordination: behavioural principles and neural correlates. Exp Brain Res 154:267–274

    Article  PubMed  CAS  Google Scholar 

  • Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J (2001) Brain areas involved in interlimb coordination: a distributed network. Neuroimage 14:947–958

    Article  PubMed  CAS  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776

    Article  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia 42:855–867

    Article  PubMed  CAS  Google Scholar 

  • deGuzman GC, Kelso JAS (1991) Multifrequency behavioral patterns and the phase attractive circle map. Biol Cybern 64:485–495

    Article  PubMed  CAS  Google Scholar 

  • Deutsch D (1983) The generation of two isochronous sequences in parallel. Percept Psychophys 34:331–337

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Bootsma RJ (2008) Non-linear gaining in precision aiming: making Fitts’ task a bit easier. Acta Psychol 129:217–227

    Article  Google Scholar 

  • Fraisse P (1946) Contribution a etude du rythme en tant que forme temporelle. J de Psychologie Normale et Pathologique 39:283–304

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Google Scholar 

  • Haken H, Peper CE, Beek PJ, Daffertshofer A (1996) A model for phase transitions in human hand movements during multifrequency tapping. Phys D Nonlinear Phenom 90:179–196

    Article  Google Scholar 

  • Hurley SR, Lee TD (2006) The influence of augmented feedback and prior learning on the acquisition of a new bimanual coordination pattern. Hum Move Sci 25:339–348

    Article  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, deGuzman GC (1988) Order in time: how cooperation between the hands informs the design of the brain. In: Haken H (ed) Neural and synergetic computers. Springer, Berlin, pp 180–196

    Google Scholar 

  • Kovacs AJ, Shea CH (2010) Amplitude differences in bimanual coordination. Exp Brain Res 202:519–525

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2008) Perceptual influences on Fitt’s law. Exp Brain Res 190:99–103

    Article  PubMed  CAS  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2009a) Bimanual 1:1 with 90° continuous phase: difficult or easy? Exp Brain Res 193:129–136

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2009b) Using scanning trials to assess intrinsic coordination dynamics. Neurosci Lett 455:162–167

    Article  PubMed  CAS  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2010a) Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Exp Brain Res 201:249–259

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2010b) Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. J Exp Psychol Hum Percept Perform 36:936–954

    Article  PubMed  Google Scholar 

  • Lee TD, Swinnen SP, Verschueren S (1995) Relative phase alterations during bimanual skill acquisition. J Mot Behav 27:263–274

    Article  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Peper CE, Beek PJ, van Wieringen PCW (1995a) Coupling strength in tapping a 2:3 polyrhythm. Hum Move Sci 14:217–245

    Article  Google Scholar 

  • Peper CE, Beek PJ, van Wieringen PCW (1995b) Multifrequency coordination in bimanual tapping: asymmetrical coupling and signs of supercriticality. J Exp Psychol Hum Percept Perform 21:1117–1138

    Article  Google Scholar 

  • Peper CE, Beek PJ, van Wieringen PCW (1995c) Frequency-induced phase-transitions in bimanual tapping. Biol Cybern 73:301–309

    Article  PubMed  CAS  Google Scholar 

  • Ridderikhoff A, Peper CE, Beek PJ (2005) Unraveling interlimb interactions underlying bimanual coordination. J Neurophysiol 94:3112–3125

    Article  PubMed  Google Scholar 

  • Riek S, Woolley D (2005) Hierachical organization of neuro-anatomical constraints in interlimb coordination. Hum Move Sci 24:798–814

    Article  Google Scholar 

  • Riek S, Carson RG, Byblow WD (1992) Spatial and muscular dependencies in bimanual coordination. Hum Move Sci 23:251–265

    Google Scholar 

  • Ryu Y, Buchanan JJ (2009) Learning an environment-actor skill: visuomotor transformation and coherency of perceptual structure. Exp Brain Res 196:279–293

    Article  PubMed  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257

    Google Scholar 

  • Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  PubMed  Google Scholar 

  • Shea CH, Boyle J (2011) Bimanual coordination: evaluating feedback displays. J Sport Exerc Psychol 33:S112

    Google Scholar 

  • Sternad D, Turvey MT, Saltzman EL (1999a) Dynamics of 1:2 coordination: generalizing relative phase to n:m rhythms. J Mot Behav 31:207–223

    Article  PubMed  Google Scholar 

  • Sternad D, Turvey MT, Saltzman EL (1999b) Dynamics of 1:2 coordination: sources of symmetry breaking. J Mot Behav 31:224–235

    Article  PubMed  Google Scholar 

  • Summers JJ, Todd JA, Kim YH (1993) The influence of perceptual and motor factors on bimanual coordination in polyrhythmic tapping task. Psychol Res 55:107–125

    Article  PubMed  CAS  Google Scholar 

  • Summers JJ, Davis AS, Byblow WD (2002) The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Hum Move Sci 21:699–721

    Article  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioral principles to neural-networks. Nat Rev Neurosci 3:350–361

    Article  CAS  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Swinnen SP, Dounskaia N, Verschueren S, Serrien DJ, Daelman A (1995) Relative phase destabilization during interlimb coordination: the disruptive role of kinesthetic afferences induced by passive movements. Exp Brain Res 3:439–454

    Google Scholar 

  • Swinnen SP, Dounskaia N, Walter CB, Serrien DJ (1997a) Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio. J Exp Psychol Hum Percept Perform 23:1087–1110

    Article  Google Scholar 

  • Swinnen SP, Lee TD, Verschueren S, Serrien DJ, Bogaerts DJ (1997b) Interlimb coordination: learning and transfer under different feedback conditions. Hum Move Sci 16:749–785

    Article  Google Scholar 

  • Swinnen SP, Verchueren MP, Bogaerts H, Dounskaia N, Lee TD, Stelmach GE, Serrien DJ (1998) Age related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cogn Neuropsychol 15:439–466

    Article  Google Scholar 

  • Tomatsu S, Ohtsuki T (2005) The effect of visual transformation on bimanual circling movement. Exp Brain Res 166:277–286

    Article  PubMed  Google Scholar 

  • Treffner PJ, Turvey MT (1993) Resonance constraints on rhythmic movement. J Exp Psychol Hum Percept Perform 19:339–363

    Google Scholar 

  • Tuller B, Kelso JAS (1989) Environmentally-specific patterns of movement coordination in normal and split brain subjects. Exp Brain Res 75:306–316

    Article  PubMed  CAS  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005a) Perceptual coupling in rhythmic movement coordination: stable perception leads to stable action. Exp Brain Res 164:517–528

    Article  PubMed  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005b) Human movement coordination implicates relative direction as the information for relative phase. Exp Brain Res 165:51–361

    Article  Google Scholar 

  • Wilson AS, Snapp-Childs W, Coats R, Bingham GP (2010) Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Exp Brain Res 205:513–520

    Article  PubMed  Google Scholar 

  • Yamanishi J, Kawato M, Suzuki R (1980) Two coupled oscillators as a model for the coordinated finger tapping by both hands. Biol Cybern 37:219–225

    Article  PubMed  CAS  Google Scholar 

  • Zaal FTJM, Bingham GP, Schmidt RC (2000) Visual perception of mean relative phase and phase variability. J Exp Psychol Hum Percept Perform 26:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Zanone PG, Kelso JAS (1992) Evolution of behavioral attractors with learning: nonequilibrium phase-transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyles, J., Panzer, S. & Shea, C.H. Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback. Exp Brain Res 216, 515–525 (2012). https://doi.org/10.1007/s00221-011-2955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2955-x

Keywords

Navigation