Skip to main content
Log in

Modality-independent role of the primary auditory cortex in time estimation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been argued that both modality-specific and supramodal mechanisms dedicated to time perception underlie the estimation of interval durations. While it is generally assumed that early sensory areas are dedicated to modality-specific time estimation, we hypothesized that early sensory areas such as the primary visual cortex or the auditory cortex might be involved in time perception independently of the sensory modality of the input. To test this possibility, we examined whether disruption of the primary visual cortex or the auditory cortex would disrupt time estimation of auditory stimuli and visual stimuli using transcranial magnetic stimulation (TMS). We found that disruption of the auditory cortex impaired not only time estimation of auditory stimuli but also impaired that of visual stimuli to the same degree. This finding suggests a supramodal role of the auditory cortex in time perception. On the other hand, TMS over the primary visual cortex impaired performance only in visual time discrimination. These asymmetric contributions of the auditory and visual cortices in time perception may be explained by a superiority of the auditory cortex in temporal processing. Here, we propose that time is primarily encoded in the auditory system and that visual inputs are automatically encoded into an auditory representation in time discrimination tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander I, Cowey A, Walsh V (2005) The right parietal cortex and time perception: back to Critchley and the Zeitraffer phenomenon. Cogn Neuropsychol 22(3/4):306–315

    Article  PubMed  Google Scholar 

  • Ayhan I, Bruno A, Nishida S, Johnston A (2009) The spatial tuning of adaptation-based time compression. J Vis 9(11):2 1–12

    Article  PubMed  Google Scholar 

  • Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Phil Trans R Soc B Biol Sci 364:1831–1840

    Article  Google Scholar 

  • Bueti D, Bahrami B, Walsh V (2008a) The sensory and association cortex in time perception. J Cogn Neurosci 20:1–9

    Article  Google Scholar 

  • Bueti D, van Dongen EV, Walsh V (2008b) The role of superior temporal cortex in auditory timing. PLoS One 3:e2481

    Article  PubMed  Google Scholar 

  • Burr D, Banks MS, Morrone MC (2009) Auditory dominance over vision in the perception of interval duration. Exp Brain Res 198:49–57

    Article  PubMed  Google Scholar 

  • Chen K-M, Yeh S-L (2009) Asymmetric cross-modal effects in time perception. Acta Psychol 130:225–234

    Article  Google Scholar 

  • Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 303:1506–1508

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Nazarian B, Vida F (2008) Timing, storage and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci 20:2185–2197

    Article  PubMed  Google Scholar 

  • Ferrandez AM, Hugueville L, Lehericy S, Poline JB, Marsault C et al (2003) Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage 19:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Franssen V, Vandierendonck A, van Heil A (2006) Duration estimation and the phonological loop: articulatory suppression and irrelevant sounds. Psychol Res 70:304–316

    Article  PubMed  Google Scholar 

  • Getzmann S (2007) The effect of brief auditory stimuli on visual apparent motion. Perception 36:1089–1103

    Article  PubMed  Google Scholar 

  • Ghose GM, Maunsell JHR (2002) Attentional modulation in visual cortex depends on task timing. Nature 419:616–620

    Article  PubMed  CAS  Google Scholar 

  • Goldstone S, Lhamon WT (1974) Studies of auditory-visual differences in human time judgment: 1. Sounds are judged longer than lights. Percept Mot Skills 39:63–82

    PubMed  CAS  Google Scholar 

  • Goldstone S, Boardman WK, Lhamon WT (1959) Intersensory comparisons of temporal judgments. J Exp Pscyhol 57:243–248

    Article  CAS  Google Scholar 

  • Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72:561–582

    Article  PubMed  Google Scholar 

  • Grondin S, Roussel M-E, Gamache P-L, Roy M, Ouellet B (2005) The structure of sensory events and the accuracy of time judgments. Perception 34:45–58

    Article  PubMed  Google Scholar 

  • Harrington DL et al (1998a) Temporal processing in the basal ganglia. Neuropsychology 12:3–12

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL et al (1998b) Cortical networks underlying mechanisms of time perception. J Neurosci 18:1085–1095

    PubMed  CAS  Google Scholar 

  • Hickok G, Buschsbaum B, Humphries C, Muftuler T (2003) Auditory-motor interaction revealed by fMRI: speech, music and working memory in area Spt. J Cogn Neurosci 15:673–682

    PubMed  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  PubMed  CAS  Google Scholar 

  • Ivry R, Keele S (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152

    Article  Google Scholar 

  • Ivry RB, Schlerf JE (2008) Dedicated and intrinsic models of time perception. Trends Cogn Sci 12:273–280

    Article  PubMed  Google Scholar 

  • Ivry RB et al (2002) The cerebellum and event timing. Ann NY Acad Sci 978:302–317

    Article  PubMed  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8:234–241

    Article  PubMed  CAS  Google Scholar 

  • Johnston A, Arnold DH, Nishida S (2006) Spatially localised distortions of event time. Curr Biol 16:472–479

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Paffen CLE, Hogendoorn H, Verstraten FAJ (2006) Time dilation in dynamic display. J Vis 6(12):8 1421–1430

    Article  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–327

    Article  PubMed  CAS  Google Scholar 

  • Lewald J, Meister IG, Widemann J, Topper R (2004) Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci 16:828–838

    Article  PubMed  Google Scholar 

  • Lewis PA, Miall RC (2006) A right hemispheric prefrontal system for cognitive time measurement. Behav Processes 71:226–234

    Article  PubMed  CAS  Google Scholar 

  • Lhamon WT, Goldstone S (1974) Studies in auditory-visual differences in human time judgment: 2. More transmitted information with sounds than lights. Percept Mot Skills 39:295–307

    PubMed  CAS  Google Scholar 

  • Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17:154–163

    Article  Google Scholar 

  • Morosan P et al (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:669–683

    PubMed  Google Scholar 

  • Morrone MC (2005) Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8:950–954

    PubMed  CAS  Google Scholar 

  • Pariyadath V, Eagleman DM (2008) Brief subjective durations contrast with repetition. J Vis 8(16):11 1–6

    Article  PubMed  Google Scholar 

  • Penny TB, Gibbon J, Meck WH (2000) Differential effects of auditory and visual signals on clock speed and temporal memory. J Exp Psychol Hum Percept Perform 26:1770–1787

    Article  Google Scholar 

  • Rao SM et al (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535

    PubMed  CAS  Google Scholar 

  • Rao SM et al (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  PubMed  CAS  Google Scholar 

  • Shuler MG, Bear MF (2006) Reward timing the primary visual cortex. Science 311:1606–1609

    Article  PubMed  CAS  Google Scholar 

  • Vallesi A, Shallice T, Walsh V (2007) Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cereb Cortex 17:466–474

    Article  PubMed  Google Scholar 

  • van Wassenhove V, Buonomano DV, Shimojo S, Shams L (2008) Distortions of subjective time perception within and across senses. PLoS ONE 3(1):e1437

    Article  PubMed  Google Scholar 

  • Walker JT, Scott KJ (1981) Auditory-visual conflicts in the perceived duration of lights, tones and gaps. J Exp Psychol Hum Percept Perform 7:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. Q J Exp Psychol 51B:97–120

    Google Scholar 

  • Xuan B, Zhan D, He S, Chen X (2007) Larger stimuli are judged to last longer. J Vis 7(10):1–5

    Article  PubMed  Google Scholar 

  • Yarrow K, Haggard P, Heal R, Brown P, Rothwell JC (2001) Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414:302–305

    Article  PubMed  CAS  Google Scholar 

  • Zimmer U, Lewald J, Erb M, Grodd W, Karnath HO (2004) Is there a role of visual cortex in spatial hearing? Eur J Neurosci 20:3148–3156

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Human Frontier Science Foundation for RK, Nuffield Bursary for HL and the U.K. medical council (G0700929) for VW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Kanai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, R., Lloyd, H., Bueti, D. et al. Modality-independent role of the primary auditory cortex in time estimation. Exp Brain Res 209, 465–471 (2011). https://doi.org/10.1007/s00221-011-2577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2577-3

Keywords

Navigation