Skip to main content
Log in

Tactile recalibration of auditory spatial representations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the well-known spatial ventriloquism effect, auditory stimuli are mislocalized towards the location of synchronous but spatially disparate visual stimuli. Recent studies have demonstrated a similar influence of tactile stimuli on auditory localization, which predominantly operates in an external coordinate system. Here, we investigated whether this audio-tactile ventriloquist illusion leads to comparable aftereffects in the perception of auditory space as have been observed previously for audiovisual stimulation. Participants performed a relative sound localization task in which they had to judge whether a brief sound was perceived at the same or a different location as a preceding tactile stimulus (“Experiment 1”) or to the left or right of a preceding visual stimulus (“Experiment 2”). Sound localization ability was measured before and after exposure to synchronous audio-tactile stimuli with a constant spatial disparity. After audio-tactile adaptation, unimodal sound localization was shifted in the direction of the tactile stimuli during the preceding adaptation phase in both tasks. This finding provides evidence for the existence of an audio-tactile ventriloquism aftereffect and suggests that auditory space (rather than specific audio-tactile connections) can be rapidly recalibrated to compensate for audio-tactile spatial disparities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    PubMed  CAS  Google Scholar 

  • Bergan JF, Ro P, Ro D, Knudsen EI (2005) Hunting increases adaptive auditory map plasticity in adult barn owls. J Neurosci 25:9816–9820

    Article  PubMed  CAS  Google Scholar 

  • Bertelson P, de Gelder B (2004) The psychology of multimodal perception. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 141–177

    Google Scholar 

  • Bertelson P, Radeau M (1981) Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept Psychophys 29:578–584

    Article  PubMed  CAS  Google Scholar 

  • Bertelson P, Frissen I, Vroomen J, de Gelder B (2006) The aftereffects of ventriloquism: patterns of spatial generalization. Percept Psychophys 68:428–436

    Article  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization, rev ed. MIT Press, Cambridge

    Google Scholar 

  • Bonath B, Noesselt T, Martinez A, Mishra J, Schwiecker K, Heinze H-J, Hillyard S (2007) Neural basis of the ventriloquist illusion. Curr Biol 17:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Bruns P, Röder B (2010a) Tactile capture of auditory localization: an event-related potential study. Eur J Neurosci 31:1844–1857

    Article  PubMed  Google Scholar 

  • Bruns P, Röder B (2010b) Tactile capture of auditory localization is modulated by hand posture. Exp Psychol 57:267–274

    PubMed  Google Scholar 

  • Bruns P, Liebnau R, Röder B (2010) Electrophysiological correlates of the ventriloquism aftereffect in humans. Program No. 579.8. Neuroscience Meeting Planner. Society for Neuroscience, San Diego, CA

  • Caclin A, Soto-Faraco S, Kingstone A, Spence C (2002) Tactile “capture” of audition. Percept Psychophys 64:616–630

    Article  PubMed  Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Freedman SJ, Wilson L (1967) Compensation for auditory re-arrangement following exposure to auditory-tactile discordance. Percept Mot Skills 25:861–866

    PubMed  CAS  Google Scholar 

  • Frissen I, Vroomen J, de Gelder B, Bertelson P (2003) The aftereffects of ventriloquism: are they sound-frequency specific? Acta Psychol 113:315–327

    Article  Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773–778

    Article  PubMed  CAS  Google Scholar 

  • Howard IP, Templeton WB (1966) Human spatial orientation. Wiley, New York

    Google Scholar 

  • Huynh H, Feldt LS (1976) Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. J Educ Stat 1:69–82

    Article  Google Scholar 

  • King AJ (2009) Visual influences on auditory spatial learning. Phil Trans R Soc B 364:331–339

    Article  PubMed  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87

    Article  PubMed  CAS  Google Scholar 

  • Lewald J (2002) Rapid adaptation to auditory-visual spatial disparity. Learn Memory 9:268–278

    Article  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159

    Article  PubMed  CAS  Google Scholar 

  • Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cogn Brain Res 25:499–507

    Article  Google Scholar 

  • Navarra J, Soto-Faraco S, Spence C (2007) Adaptation to audiotactile asynchrony. Neurosci Lett 413:72–76

    Article  PubMed  CAS  Google Scholar 

  • Radeau M, Bertelson P (1974) The after-effects of ventriloquism. Q J Exp Psychol 26:63–71

    Article  PubMed  CAS  Google Scholar 

  • Radeau M, Bertelson P (1977) Adaptation to auditory-visual discordance and ventriloquism in semirealistic situations. Percept Psychophys 22:137–146

    Article  Google Scholar 

  • Radeau M, Bertelson P (1978) Cognitive factors and adaptation to auditory-visual discordance. Percept Psychophys 23:341–343

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH (1998) Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proc Natl Acad Sci USA 95:869–875

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH (2009) Interactions of auditory and visual stimuli in space and time. Hear Res 258:89–99

    Article  PubMed  Google Scholar 

  • Recanzone GH, Sutter ML (2008) The biological basis of audition. Annu Rev Psychol 59:119–142

    Article  PubMed  Google Scholar 

  • Shore DI, Spry E, Spence C (2002) Confusing the mind by crossing the hands. Cogn Brain Res 14:153–163

    Article  Google Scholar 

  • Slutsky DA, Recanzone GH (2001) Temporal and spatial dependency of the ventriloquism effect. Neuroreport 12:7–10

    Article  PubMed  CAS  Google Scholar 

  • Vatakis A, Spence C (2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756

    Article  PubMed  Google Scholar 

  • Vatakis A, Navarra J, Soto-Faraco S, Spence C (2008) Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. Exp Brain Res 185:521–529

    Article  PubMed  Google Scholar 

  • Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22:32–35

    Article  Google Scholar 

  • Wallace MT, Stein BE (2007) Early experience determines how the senses will interact. J Neurophysiol 97:921–926

    Article  PubMed  Google Scholar 

  • Woods TM, Recanzone GH (2004) Cross-modal interactions evidenced by the ventriloquism effect in humans and monkeys. In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 35–48

    Google Scholar 

  • Yamamoto S, Kitazawa S (2001) Reversal of subjective temporal order due to arm crossing. Nat Neurosci 4:759–765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Foundation (DFG) with grant GK 1247/1. Patrick Bruns is currently supported by a grant from the European Community’s Seventh Framework Programme (grant agreement no. 228916). We thank R. Schäfer for help with the construction of the stimulation devices, and R. Liebnau and S. Wittleder for help running participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Bruns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruns, P., Spence, C. & Röder, B. Tactile recalibration of auditory spatial representations. Exp Brain Res 209, 333–344 (2011). https://doi.org/10.1007/s00221-011-2543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2543-0

Keywords

Navigation