Skip to main content
Log in

Effects of hand termination and accuracy constraint on eye–hand coordination during sequential two-segment movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the effects of accuracy constraints and termination requirements of hand movement on eye–hand coordination. Healthy adults performed two-segment eye and hand aiming movements to predetermined stationary targets. While two-segment eye movements were made to the first and second targets for all conditions, hand movements were varied across conditions. The first segment had two target sizes to alter accuracy constraints. There were three hand movement types with different termination requirements: (1) stop both at the first and at the second targets, (2) stop at the first target and discontinue, and (3) move through the first target and discontinue. The results showed that the initiation of saccades was moderately correlated with the initiation of hand movements, and both initiations changed in a similar fashion depending on various hand termination requirements. Amplitude of primary saccades and frequency of corrective saccades during the first segment were affected by the combined effects of accuracy constraints and hand termination requirements. These results suggest that the planning and execution of saccades are based in part on global task constraints related to the accuracy and termination demands of hand movements over the two segments. During the transition from the first to the second segment, the gaze was held on the first target until shortly after the pointing to that target was terminated, showing gaze anchoring. The gaze anchoring was prolonged due to the increased accuracy constraint of that target or by including pointing to the second target. However, the gaze anchoring was broken prior to the completion of pointing when the accuracy constraint was reduced and pointing to the second target was excluded. The observed modifications of gaze anchoring imply that the oculomotor system is functionally obligated to fixate a gaze to a pointing target only to the extent that successful completion of a pointing task is ensured by the actual completion or by a predictive assessment of pointing termination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams R, Meyer D, Kornblum S (1990) Eye-hand coordination: oculomotor control in rapid aimed limb movements. J Exp Psychol Hum Percept Perform 15:248–267

    Google Scholar 

  • Adam JJ (1992) The effects of objectives and constraints on motor control strategy in reciprocal aiming movements. J Mot Behav 24:173–185

    Article  CAS  PubMed  Google Scholar 

  • Adam JJ, Paas FGWC, Eyssen ICJM, Slingerland H, Bekkering H, Drost M (1995) The control of two-element, reciprocal aiming movements: evidence for chunking. Hum Mov Sci 14:1–11

    Article  Google Scholar 

  • Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220

    Article  CAS  PubMed  Google Scholar 

  • Baldauf D, Cui H, Andersen RA (2008) The posterior parietal cortex encodes in parallel both goals for double-reach sequences. J Neurosci 28:10081–10089

    Article  CAS  PubMed  Google Scholar 

  • Bard C, Hay L, Fleury M (1985) Role of peripheral vision in the directional control of rapid aiming movements. Can J Psychol 39:151–161

    Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260

    Article  CAS  PubMed  Google Scholar 

  • Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022

    Article  PubMed  Google Scholar 

  • Bekkering H, Adam JJ, Kingma H, Huson A, Whiting HTA (1994) Reaction time latencies of eye and hand movements in single- and dual-task conditions. Exp Brain Res 97:471–476

    Article  CAS  PubMed  Google Scholar 

  • Bekkering H, Adam JJ, van den Aarssen A, Kingma H, Whiting HTA (1995) Interference between saccadic eye and goal-directed hand movements. Exp Brain Res 106:475–484

    Article  CAS  PubMed  Google Scholar 

  • Biguer B, Jeannerod M, Prablanc C (1982) The coordination of eye, head, and arm movements during reaching at a single visual target. Exp Brain Res 46:301–304

    Article  CAS  PubMed  Google Scholar 

  • Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64:476–482

    Article  CAS  PubMed  Google Scholar 

  • Bowman MC, Johansson RS, Flanagan JR (2009) Eye-hand coordination in a sequential target contract task. Exp Brain Res 195:273–283

    Article  PubMed  Google Scholar 

  • Carlton LG (1981) Processing visual feedback information for movement control. J Exp Psychol Hum Percept Perform 7:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Carpenter RHS (1988) Movements of the eyes. Pion, London

    Google Scholar 

  • Carson RG, Goodman D, Chua R, Elliott D (1993) Asymmetries in the regulation of visually guided aiming. J Mot Behav 25:21–32

    Article  CAS  PubMed  Google Scholar 

  • Chua R, Elliott D (1993) Visual regulation of manual aiming. Hum Mov Sci 12:365–401

    Article  Google Scholar 

  • Cohen YE, Andersen RA (2000) Reaches to sounds encoded in an eye-centered reference frame. Neuron 27:647–652

    Article  CAS  PubMed  Google Scholar 

  • Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057

    Article  PubMed  Google Scholar 

  • Dounskaia N, Wisleder D, Johnson T (2005) Influence of biomechanical factors on substructure of pointing movements. Exp Brain Res 164:505–516

    Article  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  CAS  PubMed  Google Scholar 

  • Elliott D (1988) The influence of visual target and limb information on manual aiming. Can J Psychol 42:57–68

    CAS  PubMed  Google Scholar 

  • Elliott D, Allard F (1985) The utilization of visual feedback information during rapid pointing movements. Q J Exp Psychol 37:407–425

    CAS  Google Scholar 

  • Ettinger U, Antonova E, Crawford TJ, Mitterschiffthaler MT, Goswani S, Sharma T, Kumari V (2005) Structural neural correlates of prosaccade and antisaccade eye movements in healthy humans. Neuroimage 24:487–494

    Article  PubMed  Google Scholar 

  • Fischer MH, Pratt J, Neggers SFW (2003) Inhibition of return and manual pointing movements. Percept Psychophys 65:379–387

    PubMed  Google Scholar 

  • Fischman MG, Reeve TG (1992) Slower movement times may not necessarily imply on-line programming. J Hum Mov Stud 22:131–144

    Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Johansson RS (2003) Action plans used in action observation. Nature 424:769–771

    Article  CAS  PubMed  Google Scholar 

  • Ford KA, Goltz HC, Brown MR, Everling S (2005) Neural processes associated with antisaccade task performance investigated with event related FMRI. J Neurophysiol 94:429–440

    Article  PubMed  Google Scholar 

  • Frens MA, Erkelens CJ (1991) Coordination of hand movements and saccades: evidence for a common and a separate pathway. Exp Brain Res 85:682–690

    Article  CAS  PubMed  Google Scholar 

  • Gaveau V, Pélisson D, Blangero A, Urquizar C, Prablanc C, Vighetto A, Pisella L (2008) Saccade control and eye-hand coordination in optic ataxia. Neuropsychologia 46:475–486

    Article  PubMed  Google Scholar 

  • Gaymard B, Ploner CJ, Rivaud-Pechoux S, Pierrot-Deseilligny C (1999) The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp Brain Res 129:288–301

    Article  CAS  PubMed  Google Scholar 

  • Gielen CCAM, Van den Heuvel PJM, Van Gisbergen JAM (1984) Coordination of fast eye and arm movements in a tracking task. Exp Brain Res 56:156–161

    Article  Google Scholar 

  • Goldberg ME, Bruce CJ (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J Neurophysiol 64:489–508

    CAS  PubMed  Google Scholar 

  • Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–750

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99:97–111

    Article  CAS  PubMed  Google Scholar 

  • Greve D, Grossberg S, Guenther F, Bullock D (1993) Neural representations for sensory-motor control, I: head-centered 3-D target positions from opponent eye commands. Acta Psychol (Amst) 82:115–138

    Article  CAS  Google Scholar 

  • Gribble PL, Everling S, Ford K, Mattar A (2002) Hand-eye coordination for rapid pointing movements: arm movement direction and distance are specified prior to saccade onset. Exp Brain Res 145:372–382

    Article  PubMed  Google Scholar 

  • Hayhoe MM, Shrivastava A, Mruczek R, Pelz JB (2003) Visual memory and motor planning in a natural task. J Vis 3:49–63

    Article  PubMed  Google Scholar 

  • Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  • Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res 54:73–84

    Article  PubMed  Google Scholar 

  • Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Westling G, Bäckström A, Flanagan JR (2001) Eye-hand coordination in object manipulation. J Neurosci 21:6917–6932

    CAS  PubMed  Google Scholar 

  • Johnston K, Everling S (2006) Neural activity in monkey prefrontal cortex is modulated by task context and behavioral instruction during delayed-match-to-sample and conditional prosaccade-antisaccade tasks. J Cogn Neurosci 18:749–765

    Article  PubMed  Google Scholar 

  • Ketcham CJ, Seidler RD, Van Gemmert AWA, Stelmach GE (2002) Age-related kinematic differences as influenced by task difficulty, target size, and movement amplitude. J Gerontol Psychol Sci 57B:P54–P64

    Google Scholar 

  • Lemay M, Stelmach GE (2005) Multiple frames of reference for pointing to a remembered target. Exp Brain Res 164:301–310

    Article  PubMed  Google Scholar 

  • Lewald J, Ehrenstein WH (1996) The effect of eye position on auditory lateralization. Exp Brain Res 108:473–485

    Article  CAS  PubMed  Google Scholar 

  • Lünenburger L, Hoffmann KP (2003) Arm movement and gap as factors influencing the reaction time of the second saccade in a double-step task. Eur J Neurosci 17:2481–2491

    Article  PubMed  Google Scholar 

  • Lünenburger L, Kutz DF, Hoffmann KP (2000) Influence of arm movements on saccades in humans. Eur J Neurosci 12:4107–4116

    Article  PubMed  Google Scholar 

  • MacKenzie CL, Marteniuk RG, Dugas C, Liske D, Eickmeier B (1987) Three-dimensional movement trajectories in Fitts’ task: implications for control. Q J Exp Psychol [A] 39:629–647

    Google Scholar 

  • Mackrous I, Proteau L (2007) Specificity of practice results from differences in movement planning strategies. Exp Brain Res 183:181–193

    Article  PubMed  Google Scholar 

  • Ma-Wyatt A, McKee SP (2007) Visual information throughout a reach determines endpoint precision. Exp Brain Res 179:55–64

    Article  PubMed  Google Scholar 

  • Ma-Wyatt A, Stritzke M, Trommershäuser J (2010) Eye-hand coordination while pointing rapidly under risk. Exp Brain Res. doi:10.1007/s00221-010-2218-2

  • Munoz DP (2002) Commentary: saccadic eye movements: overview of neural circuitry. Prog Brain Res 140:89–96

    Article  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1993a) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575

    CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1993b) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol 70:576–589

    CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1995a) Saccade-related activity in monkey superior colliculus. II. Characteristics of cell discharge. J Neurophysiol 73:2334–2348

    CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1995b) Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol 73:2313–2333

    CAS  PubMed  Google Scholar 

  • Nakamura K, Colby CL (2002) Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc Natl Acad Sci USA 99:4026–4031

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Sakai K, Hikosaka O (1998) Neuronal activity in medial frontal cortex during learning of sequential procedures. J Neurophysiol 80:2671–2687

    CAS  PubMed  Google Scholar 

  • Nakayama Y, Yamagata T, Tanji J, Hoshi E (2008) Transformation of a virtual action plan into a motor plan in the premotor cortex. J Neurosci 28:10287–10297

    Article  CAS  PubMed  Google Scholar 

  • Neggers SF, Bekkering H (1999) Integration of visual and somatosensory target information in goal-directed eye and arm movements. Exp Brain Res 125:97–107

    Article  CAS  PubMed  Google Scholar 

  • Neggers SFW, Bekkering H (2000) Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 83:639–651

    CAS  PubMed  Google Scholar 

  • Neggers SFW, Bekkering H (2001) Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86:961–970

    CAS  PubMed  Google Scholar 

  • Neggers SFW, Bekkering H (2002) Coordinated control of eye and hand movements in dynamic reaching. Hum Mov Sci 21:349–376

    Article  CAS  PubMed  Google Scholar 

  • Paillard J (1982) The contribution of peripheral and central vision to visually guided reaching. In: Ingle D, Goodale M, Mansfield R (eds) Analysis of visual behaviour. MIT Press, Cambridge, pp 367–385

    Google Scholar 

  • Pelz J, Hayhoe M, Loeber R (2001) The coordination of eye, head, and hand movements in a natural task. Exp Brain Res 139:266–277

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of memory-guided saccades in Man. Exp Brain Res 83:607–617

    Article  CAS  PubMed  Google Scholar 

  • Pouget A, Ducom JC, Torri J, Bavelier D (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83:B1–11

    Article  PubMed  Google Scholar 

  • Prablanc C, Jeannerod M (1975) Corrective saccades: dependence on retinal reafferent signals. Vision Res 15:465–469

    Article  CAS  PubMed  Google Scholar 

  • Prablanc C, Echallier JE, Jeannerod M, Komilis E (1979) Optimal response of eye and hand motor systems in pointing at a visual target. Biol Cybern 35:183–187

    Article  CAS  PubMed  Google Scholar 

  • Prablanc C, Pelisson D, Goodale MA (1986) Visual control of reaching movements without vision of the limb. Role of retinal feedback of target position in guiding the hand. Exp Brain Res 62:293–302

    Article  CAS  PubMed  Google Scholar 

  • Pratt J, Neggers B (2008) Inhibition of return in single and dual tasks: examining saccadic, keypress, and pointing responses. Percept Psychophys 70:257–265

    Article  PubMed  Google Scholar 

  • Pratt J, Shen J, Adam J (2004) The planning and execution of sequential eye movements: saccades do not show the one target advantage. Hum Mov Sci 22:679–688

    Article  PubMed  Google Scholar 

  • Rand MK, Stelmach GE (2000) Segment interdependency and difficulty in two-stroke sequences. Exp Brain Res 134:228–236

    Article  CAS  PubMed  Google Scholar 

  • Rand MK, Alberts JL, Stelmach GE, Bloedel JR (1997) The influence of movement segment difficulty on movements with two-stroke sequence. Exp Brain Res 115:137–146

    Article  CAS  PubMed  Google Scholar 

  • Rand MK, Stelmach GE, Bloedel JR (2000) Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia 38:203–212

    Article  CAS  PubMed  Google Scholar 

  • Rand MK, Van Gemmert AWA, Stelmach GE (2002) Segment difficulty in two-stroke movements in patients with Parkinson’s disease. Exp Brain Res 143:383–393

    Article  PubMed  Google Scholar 

  • Reyes-Puerta V, Philipp R, Lindner W, Hoffmann KP (2010) The role of the rostral superior colliculus in gaze anchoring during reach movements. J Neurophysiol. doi:10.1152/JN.00989.2009

  • Rivaud S, Gaymard B, Ploner CJ, Vermersch AI, Pierrot-Deseilligny C (1994) Eye movement disorders after frontal eye field lesions in humans. Exp Brain Res 102:110–120

    Article  CAS  PubMed  Google Scholar 

  • Sanders JA, Knill DC (2004) Visual feedback control of hand movements. J Neurosci 24:3223–3234

    Article  Google Scholar 

  • Shima K, Tanji J (1998) Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J Neurophysiol 80:3247–3260

    CAS  PubMed  Google Scholar 

  • Short MW, Fischman MG, Wang YT (1996) Cinematographical analysis of movement pathway constraints in rapid target-striking tasks. J Mot Behav 28:157–163

    Article  PubMed  Google Scholar 

  • Sidaway B, Sekiya H, Fairweather M (1995) Movement variability as a function accuracy demand in programmed serial aiming responses. J Mot Behav 27:67–76

    Article  Google Scholar 

  • Soechting JF, Flanders M (1992) Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu Rev Neurosci 15:167–191

    Article  CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2008) Brain circuits for the internal monitoring of movements. Annu Rev Neurosci 31:317–338

    Article  CAS  PubMed  Google Scholar 

  • Stuphorn V, Bauswein E, Hoffmann KP (2000) Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. J Neurophysiol 83:1283–1299

    CAS  PubMed  Google Scholar 

  • Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99:507–523

    Article  CAS  PubMed  Google Scholar 

  • Vindras P, Desmurget M, Prablanc C, Viviani P (1998) Pointing errors reflect biases in the perception of the initial hand position. J Neurophysiol 79:3290–3294

    CAS  PubMed  Google Scholar 

  • Vindras P, Desmurget M, Viviani P (2005) Error parsing in visuomotor pointing reveals independent processing of amplitude and direction. J Neurophysiol 94:1212–1224

    Article  PubMed  Google Scholar 

  • Warabi T, Noda H, Kato T (1986) Effect of aging on sensorimotor functions of eye and hand movements. Exp Neurol 92:686–697

    Article  CAS  PubMed  Google Scholar 

  • Weiss P, Stelmach GE, Adler CH, Waterman C (1996) Parkinsonian arm movements as altered by task difficulty. Parkinsonism Relat Disord 2:215–223

    Article  CAS  PubMed  Google Scholar 

  • Werner W, Dannenberg S, Hoffmann KP (1997a) Arm-movement related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Exp Brain Res 115:191–205

    Article  CAS  PubMed  Google Scholar 

  • Werner W, Hoffmann KP, Dannenberg S (1997b) Anatomical distribution of arm-movement-related neurons in the primate superior colliculus and underlying reticular formation in comparison with visual and saccadic cells. Exp Brain Res 115:206–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from National Institute on Aging AG31366. We thank Ms. Lydia Anderson and Ms. Morgan Fairman for their help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miya K. Rand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, M.K., Stelmach, G.E. Effects of hand termination and accuracy constraint on eye–hand coordination during sequential two-segment movements. Exp Brain Res 207, 197–211 (2010). https://doi.org/10.1007/s00221-010-2456-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2456-3

Keywords

Navigation