Skip to main content
Log in

Rhythm synchronization performance and auditory working memory in early- and late-trained musicians

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Behavioural and neuroimaging studies provide evidence for a possible “sensitive” period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amunts K, Schlaug G, Jäncke L, Steinmetz H, Schleicher A, Dabringhaus A, Zilles K (1997) Motor cortex and hand motor skills: structural compliance in the human brain. Hum Brain Mapp 5:206–215

    Article  PubMed  CAS  Google Scholar 

  • Anvari S, Trainor L, Woodside J, Levy B (2002) Relations among musical skills, phonological processing, and early reading ability in preschool children. J Exp Child Psychol 83(2):111–130

    Article  PubMed  Google Scholar 

  • Bangert M, Schlaug G (2006) Specialization of the specialized in features of external human brain morphology. Eur J Neurosci 24(6):1832–1834

    Article  PubMed  Google Scholar 

  • Barnea-Goraly N et al (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15:1848–1854

    Article  PubMed  Google Scholar 

  • Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Bermudez P, Zatorre R (2005) Differences in gray matter between musicians and nonmusicians. Ann NY Acad Sci 1060:395–399

    Article  PubMed  Google Scholar 

  • Chen J, Penhune V, Zatorre R (2008) Moving on time: brain network for auditory- motor synchronization is modulated by rhythm complexity and musical training. J Cogn Neurosci 20(2):226–239

    Article  PubMed  Google Scholar 

  • Curtiss S (1977) Genie: a psycholinguistic study of a modern-day wild child. Academic, New York

    Google Scholar 

  • Essens P (1995) Structuring temporal sequences: comparison of models and factors of complexity. Percept Psychophys 57(4):519–532

    PubMed  CAS  Google Scholar 

  • Essens P, Povel D (1985) Metrical and nonmetrical representations of temporal patterns. Percept Psychophys 37(1):1–7

    PubMed  CAS  Google Scholar 

  • Forgeard M, Winner E, Norton A, Schlaug G (2008) Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS ONE 3(10):e3566

    Article  PubMed  CAS  Google Scholar 

  • Gaab N, Schlaug G (2003) Musicians differ from nonmusicians in brain activation despite performance matching. Ann NY Acad Sci 999:385–388

    Article  PubMed  Google Scholar 

  • Garvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wasserman EM (2003) Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 114:1662–1670

    Article  PubMed  CAS  Google Scholar 

  • Gaser C, Schlaug G (2003) Brain structures differ between musicians and non- musicians. J Neurosci 23(27):9240–9245

    PubMed  CAS  Google Scholar 

  • Helmbold N, Troche S, Rammsayer T (2007) Processing of temporal and nontemporal information as predictors of psychometric intelligence: a structural- equation modeling approach. J Pers 75(5):985–1006

    Article  PubMed  Google Scholar 

  • Hooks B, Chen C (2007) Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56(2):312–326

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson S, Lee L-L, Gaab N, Schlaug G (2003) Cerebellar volume of musicians. Cereb Cortex 13(9):943–949

    Article  PubMed  Google Scholar 

  • Hyde KL, Lerch J, Norton A, Foregeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29(10):3019–3025

    Article  PubMed  CAS  Google Scholar 

  • Innocenti G (2007) Subcortical regulation of cortical development: some effects of early, selective deprivations. Prog Brain Res 164:23–37

    Article  PubMed  Google Scholar 

  • Jentschke S, Koelsch S (2009) Musical training modulates the development of syntax processing in children. Neuroimage 47:735–744

    Article  PubMed  Google Scholar 

  • Knudsen EI (2004) Sensitive periods in the development of the brain and behaviour. J Cogn Neurosci 16(8):1412–1425

    Article  PubMed  Google Scholar 

  • Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2001) Delayed maturation and sensitive periods in the auditory cortex. Audiol Neuro-otol 6(6):346–362

    Article  CAS  Google Scholar 

  • Lenneberg E (1967) Biological foundations of language. New York, Wiley

    Google Scholar 

  • Madison G, Forsman L, Blom Ö, Karabanov A, Ullén F (2009) Correlations between general intelligence and components of serial timing variability. Intelligence 37:68–75

    Article  Google Scholar 

  • Moore J, Linthicum F (2007) The human auditory system: a timeline of development. Int J Audiol 46(9):460–478

    Article  PubMed  Google Scholar 

  • Moreno S, Marques C, Santos A, Santos M, Castro S, Besson M (2009) Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex 19(3):712–723

    Article  PubMed  Google Scholar 

  • Pantev C, Oostenveld R, Engelien A, Ross B, Roberts L, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport AL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283(5409):1908–1911

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH, Brandler S (2007) Performance on temporal information processing as an index of general intelligence. Intelligence 35(2):123–139

    Article  Google Scholar 

  • Saffran J (2003) Musical learning and language development. Ann NY Acad Sci 999:397–401

    Article  PubMed  Google Scholar 

  • Savion-Lemieux T, Bailey J, Penhune V (2009) Developmental contributions to motor sequence learning. Exp Brain Res 195:293–306

    Article  PubMed  Google Scholar 

  • Schellenberg E (2001) Music and nonmusical abilities. Ann NY Acad Sci 930:355–371

    PubMed  CAS  Google Scholar 

  • Schellenberg E (2004) Music lessons enhance IQ. Psychol Sci 15(8):511–514

    Article  PubMed  Google Scholar 

  • Schellenberg E (2006) Long-term positive associations between music lessons and IQ. J Educ Psychol 98(2):457–468

    Article  Google Scholar 

  • Schellenberg E, Peretz I (2008) Music, language and cognition: unresolved issues. Trends Cogn Sci 12(2):45–46

    Article  PubMed  Google Scholar 

  • Schlaug G, Jäncke L, Huang Y, Staiger J, Steinmetz H (1995) Increased corpus callosum size in musicians. Neuropsychologia 33(8):1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Schlaug G, Norton A, Overy K, Winner E (2005) Effects of music training on the child’s brain and cognitive development. Ann NY Acad Sci 1060:219–230

    Article  PubMed  Google Scholar 

  • Shahin A, Roberts LE, Trainor L (2004) Enhancement of auditory cortical development by musical experience in children. Neuroreport 15(12):1917–1921

    Article  PubMed  Google Scholar 

  • Sharma A, Gilley P, Dorman M, Baldwin R (2007) Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 46(9):494–499

    Article  PubMed  Google Scholar 

  • Svirsky M, Teoh S-W, Neuburger H (2004) Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiol Neuro-otol 9(4):224–233

    Article  Google Scholar 

  • Takeuchi A, Hulse S (1993) Absolute pitch. Psychol Bull 113(2):345–361

    Article  PubMed  CAS  Google Scholar 

  • Thomas K, Nelson C (2001) Serial reaction time learning in pre-school and school- age children. J Exp Child Psychol 79:364–387

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toage AW (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404(6774):190–193

    Article  PubMed  CAS  Google Scholar 

  • Tomblin J, Barker B, Hubbs S (2007) Developmental constraints on language development in children with cochlear implants. Int J Audiol 46(9):512–523

    Article  PubMed  Google Scholar 

  • Trainor L (2005) Are there critical periods for musical development? Dev Psychobiol 46(3):262–278

    Article  PubMed  Google Scholar 

  • Ullén F, Forsman L, Blom Ö, Karabanov A, Madison G (2008) Intelligence and variability in a simple timing task share neural substrates in the prefrontal white matter. J Neurosci 28(16):4238–4243

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D, Savion-Lemieux T, Penhune V (2007) The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Exp Brain Res 176(2):332–340

    Article  PubMed  Google Scholar 

  • Weber-Fox C, Neville HJ (2001) Sensitive periods differentiating processing of open- and closed-class words: an ERP study of bilinguals. J Speech Lang Hear Res 44(6):1338–1353

    Article  PubMed  CAS  Google Scholar 

  • Wechsler D (1997) Wechsler Adult Intelligence Scale, 3rd edn. Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D (1999) Wechsler abbreviated Scale of Intelligence. Psychological Corporation, San Antonio

    Google Scholar 

  • Wiesel TN, Hubel DN (1965) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28(6):1060–1072

    PubMed  CAS  Google Scholar 

  • Zatorre R (2003) Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nat Neurosci 6(7):692–695

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the important contribution of Amanda Daly in data collection and analysis. Most importantly, we would like to thank the musicians who participated in our study. Funds supporting this research came from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de la recherche en santé du Québec (FRSQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Bailey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, J.A., Penhune, V.B. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Exp Brain Res 204, 91–101 (2010). https://doi.org/10.1007/s00221-010-2299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2299-y

Keywords

Navigation