Skip to main content
Log in

The effects of familiar size and object trajectories on time-to-contact judgements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Many interceptive actions involve interactions with objects that are familiar to the observer and have known sizes. Two experiments investigated how known size influences observers’ perception of time-to-contact (T c). Participants made T c judgements of objects that were either ambiguously sized, standard-size in identity/familiarity, or off-size in identity/familiarity, and simulated as approaching on linear trajectories (Experiment 1), or linear versus parabolic trajectories (Experiment 2). In Experiment 1, T c judgements were influenced by the size of the object in the three object identity/familiarity conditions; the greatest size effect occurred in the off-size condition compared to the ambiguous size and standard-size conditions. The results of Experiment 2 replicated these results and found that size effects were not reduced with displays simulating parabolic trajectories, that is, displays simulating ecologically valid free-falling objects. Taken together, the finding that T c judgements are influenced by object identity/familiarity does not provide support for the tau hypothesis, nor the hypothesis that T c judgements are based solely on optic expansion rates. However, the results do provide support for the proposition that T c judgements are based on a combination of rate of retinal image expansion and object identity/familiarity information, the latter information requiring observers to have prior experience with, or knowledge about, the objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abernethy B, Gill DP, Parks SL, Packer ST (2001) Expertise and the perception of kinematic and situational probability information. Perception 30:233–252

    Article  CAS  PubMed  Google Scholar 

  • Battaglia P, Schrater P, Kersten D (2005) Auxiliary object knowledge influences visually guided interception behavior. ACM Int Conf Proc Ser 95:145–152

    Google Scholar 

  • Brouwer AM, López-Moliner J, Brenner E, Smeets JBJ (2006) Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity. Vis Res 46:382–391

    Article  PubMed  Google Scholar 

  • Cavallo V, Laurent M (1988) Visual information and skill level in time-to-collision estimation. Perception 17:623–632

    Article  CAS  PubMed  Google Scholar 

  • DeLucia PR (1991) Pictorial and motion-based information for depth perception. J Exp Psychol Hum Percept Performan 17:738–748

    Article  CAS  Google Scholar 

  • DeLucia PR (2004) Time-to-contact judgments of an approaching object that is partially concealed by and occluder. J Exp Psychol Hum Percept Performan 30:287–304

    Article  Google Scholar 

  • DeLucia PR (2005) Does binocular disparity or familiar size override effects of relative size on judgments of time to contact? The Q J Exp Psychol A 58:865–886

    PubMed  Google Scholar 

  • DeLucia PR, Warren R (1994) Pictorial and motion-based depth information during active control of self-motion: Size-arrival effects on collision avoidance. J Exp Psychol Hum Percept Performan 20:783–798

    Article  CAS  Google Scholar 

  • DeLucia PR, Kaiser MK, Bush JM, Meyer LE, Sweet BT (2003) Information integration in judgements of time to contact. Q J Exp Psychol Hum Exp Psychol 56A:1165–1189

    Google Scholar 

  • Distler HK, Gegenfurtner KR, van Veen HAHC, Hawken MJ (2000) Velocity constancy in a virtual reality environment. Perception 29:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Epstein W (1965) Nonrelational judgments of size and distance. Am J Psychol 78:120–123

    Article  CAS  PubMed  Google Scholar 

  • Gibson EJ (1969) Principles of Perceptual Learning and Development. Meredith Corporation, New York

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston, MA

    Google Scholar 

  • Gogel WC, DaSilva JA (1987) Familiar size and the theory of off-sized perception. Percept Psychophys 41:318–328

    CAS  PubMed  Google Scholar 

  • Gray R (2002) Behaviour of college baseball players in a virtual batting task. J Exp Psychol Hum Percept Performan 28:1131–1148

    Article  Google Scholar 

  • Gray R, Regan D (1999) Do monocular time-to-collision estimates necessarily involve perceived distance? Perception 28:1257–1264

    Article  CAS  PubMed  Google Scholar 

  • Haber RN, Levin CA (2001) The independence of size perception and distance perception. Percept Psychophys 63:1140–1152

    CAS  PubMed  Google Scholar 

  • Hershenson M (1992) Size-distance invariance: kinetic invariance is different from static invariance. Percept Psychophys 51:541–548

    CAS  PubMed  Google Scholar 

  • Hershenson M, Samuels SM (1999) An airplane illusion: apparent velocity determined by apparent distance. Perception 28:433–436

    Article  CAS  PubMed  Google Scholar 

  • Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F (2005) Representation of visual gravitational motion in the human vestibular cortex. Science 308:416–419

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DM, Michaels CF (2006) Lateral interception I: operative optical variables, attunement, and calibration. J Exp Psychol Hum Percept Performan 32:443–458

    Article  Google Scholar 

  • Lee DN (1976) A theory of visual control of braking based on information about time-to-collision. Perception 5:437–459

    Article  CAS  PubMed  Google Scholar 

  • Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293:293–294

    Article  Google Scholar 

  • López-Moliner J, Field DT, Wann JP (2007) Interceptive timing: Prior knowledge matters. J Vis 7:1–8

    Google Scholar 

  • McLeod RW, Ross HE (1983) Optic-flow and cognitive factors in time-to-collision estimates. Perception 12:417–423

    Article  CAS  PubMed  Google Scholar 

  • Michaels CF, Zeinstra EB, Oudejans RRD (2001) Information and action in punching a falling ball. Q J Exp Psychol 54A:69–93

    Article  CAS  Google Scholar 

  • Miller WL, Maffei V, Bosco G, Iosa M, Zago M, Macaluso E, Lacquaniti F (2008) Vestibular nuclei and cerebellum put visual gravitational motion in context. J Neurophysiol 99:1969–1982

    Article  PubMed  Google Scholar 

  • Peper L, Bootsma RJ, Mestre DR, Bakker FC (1994) Catching balls: how to get the hand into the right place at the right time. J Exp Psychol Hum Percept Performan 20:591–612

    Article  CAS  Google Scholar 

  • Predebon J (1992) The role of instructions and familiar size in absolute judgments of size and distance. Percept Psychophys 51:344–354

    CAS  PubMed  Google Scholar 

  • Rushton SK, Duke PA (2009) Observers cannot accurately estimate the speed of an approaching object in flight. Vision Research 49:1919–1928

    Article  PubMed  Google Scholar 

  • Savelsbergh GJP, Whiting HTA, Bootsma RJ (1991) Grasping tau. J Exp Psychol Hum Percept Performan 17:315–322

    Article  CAS  Google Scholar 

  • Savelsbergh GJP, Whiting HTA, Burden AM, Bartlett RM (1992) The role of predictive visual temporal information in the coordination of muscle activity in catching. Experimental Brain Research 89:223–228

    Article  CAS  PubMed  Google Scholar 

  • Saxberg BVH (1987) Projected free fall trajectories: I. Theory and simulation. Biol Cybern 56:159–175

    Article  CAS  PubMed  Google Scholar 

  • Schiff W, Detwiler ML (1979) Information used in judging impending collision. Perception 8:647–658

    Article  CAS  PubMed  Google Scholar 

  • Smith MRH, Flach JM, Dittman SM, Stanard T (2001) Monocular optical constraints on collision control. J Exp Psychol Hum Percept Performan 27:395–410

    Article  CAS  Google Scholar 

  • Stewart N (2006a) Millisecond accuracy video display using opengl under linux. Behav Res Methods 38:142–145

    PubMed  Google Scholar 

  • Stewart N (2006b) A PC parallel port button box provides millisecond accuracy under linux. Behav Res Methods 38:170–173

    PubMed  Google Scholar 

  • Todd JT (1981) Visual information about moving objects. J Exp Psychol Hum Percept Performan 7:795–810

    Article  Google Scholar 

  • Tresilian JR (1991) Emperical and theoretical issues in the perception of time-to-contact. J Exp Psychol Hum Percept Performan 17:865–876

    Article  CAS  Google Scholar 

  • Tresilian JR (1995) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Perception & Psychophysics 57:231–245

    CAS  PubMed  Google Scholar 

  • van der Kamp J, Savelsbergh G, Smeets J (1997) Multiple information sources guiding the timing of interceptive actions. Human Movement Science 16:787–822

    Article  Google Scholar 

  • Wann JP (1996) Anticipating arrival: is the tau margin a specious theory? J Exp Psychol Hum Percept Performan 22:1031–1048

    Article  CAS  Google Scholar 

  • Watson JS, Banks MS, von Hofsten C, Royden CS (1992) Gravity as a monocular cue for perception of absolute distance and/or size. Perception 21:69–76

    Article  CAS  PubMed  Google Scholar 

  • Yakimoff M, Mateeff S, Ehrenstein W, Hohnsbein J (1993) Motion extrapolation performance: A linear model approach. Hum Factors 35:501–510

    Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2004) Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. Journal of Neurophysiology 91:1620–1634

    Article  PubMed  Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2009) Visuo-motor coordination and internal models for object interception. Exp Brain Res 192:571–604

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Hosking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosking, S.G., Crassini, B. The effects of familiar size and object trajectories on time-to-contact judgements. Exp Brain Res 203, 541–552 (2010). https://doi.org/10.1007/s00221-010-2258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2258-7

Keywords

Navigation