Skip to main content
Log in

Resource-demanding versus cost-effective bimanual interaction in the brain

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When two hands require different information in bimanual asymmetric movements, interference can occur via callosal connections and ipsilateral corticospinal pathways. This interference could potentially work as a cost-effective measure in symmetric movements, allowing the same information to be commonly available to both hands at once. Using functional magnetic resonance imaging, we investigated supra-additive and sub-additive neural interactions in bimanual movements during the initiation and continuation phases of movement. We compared activity during bimanual asymmetric and symmetric movements with the sum of activity during unimanual right and left finger-tapping. Supra-additive continuation-related activation was found in the right dorsal premotor cortex and left cerebellum (lobule V) during asymmetric movements. In addition, for unimanual movements, the right dorsal premotor cortex and left cerebellum (lobule V) showed significant activation only for left-hand (non-dominant) movements, but not for right-hand movements. These results suggest that resource-demanding interactions in bimanual asymmetric movements are involved in a non-dominant hand motor network that functions to keep non-dominant hand movements stable. We found sub-additive continuation-related activation in the supplementary motor area (SMA), bilateral cerebellum (lobule VI) in symmetric movements, and the SMA in asymmetric movements. This suggests that no extra demands were placed on these areas in bimanual movements despite the conventional notion that they play crucial roles in bimanual coordination. Sub-additive initiation-related activation in the left anterior putamen suggests that symmetric movements place lower demands on motor programming. These findings indicate that, depending on coordination patterns, the neural substrates of bimanual movements either exhibit greater effort to keep non-dominant hand movements stable, or save neural cost by sharing information commonly to both hands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizawa H, Mushiake H, Inase M, Tanji J (1990) An output zone of the monkey primary motor cortex specialized for bilateral hand movement. Exp Brain Res 82:219–221

    Article  CAS  PubMed  Google Scholar 

  • Aramaki Y, Honda M, Okada T, Sadato N (2006) Neural correlates of the spontaneous phase transition during bimanual coordination. Cereb Cortex 16:1338–1348

    Article  PubMed  Google Scholar 

  • Bengtsson SL, Ehrsson HH, Forssberg H, Ullen F (2005) Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur J Neurosci 22:3255–3265

    Article  PubMed  Google Scholar 

  • Brinkman C (1984) Supplementary motor area of the monkeys cerebral-cortex—short-term and long-term deficits after unilateral ablation and the effects of subsequent callosal section. J Neurosci 4:918–929

    CAS  PubMed  Google Scholar 

  • Cardoso de Oliveira S (2002) The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychol (Amst) 110:139–159

    Article  Google Scholar 

  • Chan JL, Ross ED (1988) Left-handed mirror writing following right anterior cerebral artery infarction: evidence for nonmirror transformation of motor programs by right supplementary motor area. Neurology 38:59–63

    CAS  PubMed  Google Scholar 

  • Diedrichsen J, Grafton S, Albert N, Hazeltine E, Ivry RB (2006) Goal-selection and movement-related conflict during bimanual reaching movements. Cereb Cortex 16:1729–1738

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R (2007) Dissociating timing and coordination as functions of the cerebellum. J Neurosci 27:6291–6301

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RSJ (1995a) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10:1–5

    Article  CAS  PubMed  Google Scholar 

  • Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19:893–906

    Article  PubMed  Google Scholar 

  • Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–73

    Article  CAS  PubMed  Google Scholar 

  • Halsband U, Ito N, Tanji J, Freund HJ (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116(Pt 1):243–266

    Article  PubMed  Google Scholar 

  • Heuer H, Kleinsorge T, Spijkers W, Steglich W (2001) Static and phasic cross-talk effects in discrete bimanual reversal movements. J Mot Behav 33:67–85

    Article  CAS  PubMed  Google Scholar 

  • Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. Neuroimage 14:674–684

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    Article  CAS  PubMed  Google Scholar 

  • Kelso JA (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246:R1000–R1004

    CAS  PubMed  Google Scholar 

  • Kimura M (1990) Behaviorally contingent property of movement-related activity of the primate putamen. J Neurophysiol 63:1277–1296

    CAS  PubMed  Google Scholar 

  • Kraft E, Chen AW, Flaherty AW, Blood AJ, Kwong KK, Jenkins BG (2007) The role of the basal ganglia in bimanual coordination. Brain Res 1151:62–73

    Article  CAS  PubMed  Google Scholar 

  • Lehericy S, Ducros M, Krainik A, Francois C, Van de Moortele PF, Ugurbil K, Kim DS (2004a) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309

    Article  PubMed  Google Scholar 

  • Lehericy S, Ducros M, Van de Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim DS (2004b) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    Article  PubMed  Google Scholar 

  • Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953

    Article  CAS  PubMed  Google Scholar 

  • Müller K, Kleiser R, Mechsner F, Seitz RJ (2009) Perceptual influence on bimanual coordination: an fMRI study. Eur J Neurosci 30:116–124

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  CAS  PubMed  Google Scholar 

  • Romo R, Scarnati E, Schultz W (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movement-related activity in the anterior striatum. Exp Brain Res 91:385–395

    Article  CAS  PubMed  Google Scholar 

  • Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674

    CAS  PubMed  Google Scholar 

  • Sakai ST, Inase M, Tanji J (1999) Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study. Anat Embryol (Berl) 199:9–19

    Article  CAS  Google Scholar 

  • Sakai ST, Inase M, Tanji J (2002) The relationship between MI and SMA afferents and cerebellar and pallidal efferents in the macaque monkey. Somatosens Mot Res 19:139–148

    Article  PubMed  Google Scholar 

  • Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4:539–560

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A (2000) MRI atlas of the human cerebellum. Academic Press, San Diego

    Google Scholar 

  • Semjen A, Summers JJ, Cattaert D (1995) Hand coordination in bimanual circle drawing. J Exp Psychol Human Percept Perform 21:1139–1157

    Article  Google Scholar 

  • Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A, Tass P, Posse S, Herzog H, Sturm V, Zilles K, Seitz RJ, Freund HJ (1999) The role of ventral medial wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain 122(Pt 2):351–368

    Article  PubMed  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Timmann D, Watts S, Hore J (1999) Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. 82:103–114

  • Timmann D, Citron R, Watts S, Hore J (2001) Increased variability in finger position occurs throughout overarm throws made by cerebellar and unskilled subjects. J Neurophysiol 86:2690–2702

    CAS  PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Exp Brain Res 59:91–104

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Young Scientists (B) # 20700479 (YA) and (S) #17100003 (NS) from the Japan Society for the Promotion of Science, and Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government. We are very grateful to Mr. Toshinori Yoshioka (CNS Technical Support Group in ATR) for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Aramaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aramaki, Y., Osu, R. & Sadato, N. Resource-demanding versus cost-effective bimanual interaction in the brain. Exp Brain Res 203, 407–418 (2010). https://doi.org/10.1007/s00221-010-2244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2244-0

Keywords

Navigation