Skip to main content
Log in

The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2 identification might reflect capacity limitations of the left hemisphere, which might be aggravated by rTMS to the left parietal cortex. Therefore, rTMS pulses were applied during each trial, beginning simultaneously with T1 presentation. rTMS was directed either to P4 or to P3 (right or left parietal cortex) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field was indeed modified by rTMS, being further increased by rTMS to the left hemisphere rather than being reduced by rTMS to the right. It may be concluded that superiority of the right hemisphere in this task implies that this hemisphere is less irritable by external interference than the left hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babiloni C, Vecchio F, Rossi S, De Capua A, Bartalini S, Ulivelli M, Rossini PM (2007) Human ventral parietal cortex plays a functional role on visuospatial attention and primary consciousness. A repetitive transcranial magnetic stimulation study. Cereb Cortex 17:1486–1492

    Article  PubMed  Google Scholar 

  • Battelli L, Alvarez GA, Carlson T, Pascual-Leone A (2009) The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. J Cogn Neurosci 21:1946–1955

    Article  PubMed  Google Scholar 

  • Cazzoli D, Wurtz P, Müri RM, Hess CW, Nyffeler T (2009) Interhemispheric balance of overt attention: a theta burst stimulation study. Eur J Neurosci 29:1271–1276

    Article  PubMed  Google Scholar 

  • Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nature Neurosci 7:217–218

    Article  CAS  PubMed  Google Scholar 

  • Chambers CD, Stokes MG, Janko NE, Mattingley JB (2006) Enhancement of visual selection during transient disruption of parietal cortex. Brain Res 1097:149–155

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226

    CAS  PubMed  Google Scholar 

  • Danckert J, Ferber S (2006) Revisiting unilateral neglect. Neuropsychologia 44:987–1006

    Article  PubMed  Google Scholar 

  • Driver J, Vuilleumier P (2001) Perceptual awareness and its loss in unilateral neglect and extinction. Cognition 79:39–88

    Article  CAS  PubMed  Google Scholar 

  • Esterman M, Verstynen T, Robertson LC (2007) Attenuating illusory binding with TMS of the right parietal cortex. NeuroImage 35:1247–1255

    Article  PubMed  Google Scholar 

  • Fuggetta G, Pavone EF, Walsh V, Kiss M, Eimer M (2006) Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J Neurophysiol 95:3277–3280

    Article  PubMed  Google Scholar 

  • Harris IM, Benito CT, Ruzzoli M, Miniussi C (2008) Effects of right parietal magnetic stimulation on object identification and orientation judgments. J Cogn Neurosci 20:916–926

    Article  PubMed  Google Scholar 

  • Hellige JB (1983) Feature similarity and laterality effects in visual masking. Neuropsychologia 21:633–639

    Article  CAS  PubMed  Google Scholar 

  • Hellige JB, Webster R (1979) Right hemisphere superiority for initial stages of letter processing. Neuropsychologia 17:653–660

    Article  CAS  PubMed  Google Scholar 

  • Hellige JB, Cox PJ, Litvac L (1979) Information processing in the cerebral hemispheres: selective hemispheric activation and capacity limitations. J Exper Psychol: General 108:251–279

    Article  CAS  Google Scholar 

  • Hilgetag CC, Théoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nature Neurosci 4:953–957

    Article  CAS  PubMed  Google Scholar 

  • Holländer A, Corballis MC, Hamm JP (2005a) Visual-field asymmetry in dual-stream RSVP. Neuropsychologia 43:35–40

    Article  PubMed  Google Scholar 

  • Holländer A, Hausmann M, Hamm JP, Corballis MC (2005b) Sex hormonal modulation of hemispheric asymmetries in the attentional blink. J Int Neuropsychol Soc 11:263–272

    Article  PubMed  Google Scholar 

  • Kessler K, Schmitz F, Gross J, Hommel B, Shapiro K, Schnitzler A (2005) Cortical mechanisms of attention in time: neural correlates of the Lag-1-sparing phenomenon. Eur J Neurosci 21:2563–2574

    Article  PubMed  Google Scholar 

  • Kinsbourne M (1993) Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace. In: Robertson IH, Marshall JC (eds) Unilateral neglect: clinical and experimental studies. Erlbaum, Hove, pp 63–86

    Google Scholar 

  • Koch G, Oliveri M, Torriero S, Caltagirone C (2005) Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex. Exp Brain Res 160:510–516

    Article  PubMed  Google Scholar 

  • Naccache L, Blandin E, Dehaene S (2002) Unconscious masked priming depends on temporal attention. Psychol Sci 13:416–424

    Article  PubMed  Google Scholar 

  • Navon D (1984) Resources—a theoretical soup stone? Psych Rev 91:216–234

    Article  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120:515–533

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Olivers CNL, Van der Burg E (2008) Bleeping you out of the blink: sound saves vision from oblivion. Brain Res 1242:191–199

    Article  CAS  PubMed  Google Scholar 

  • Pashler H (1994) Dual-task interference in simple tasks: data and theory. Psych Bull 116:220–244

    Article  CAS  Google Scholar 

  • Pivik RT, Broughton RJ, Coppola R, Davidson RJ, Fox N, Nuwer MR (1993) Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiol 30:547–558

    Article  CAS  Google Scholar 

  • Rounis E, Yarrow K, Rothwell JC (2007) Effects of rTMS conditioning over the fronto-parietal network on motor versus visual attention. J Cogn Neurosci 19:513–524

    Article  PubMed  Google Scholar 

  • Rushworth MFS, Ellison A, Walsh V (2001) Complementary localization and lateralization of orienting and motor attention. Nature Neurosci 4:656–661

    Article  CAS  PubMed  Google Scholar 

  • Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21:207–221

    Article  PubMed  Google Scholar 

  • Scalf PE, Banich MT, Kramer AF, Narechania K, Simon CD (2007) Double take: parallel processing by the cerebral hemispheres reduces the attentional blink. J Exp Psychol Human Percept Perform 33:298–329

    Article  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Siman-Tov T, Mendelsohn A, Schonberg T, Avidan G, Podlipsky I, Pessoa L, Gadoth N, Ungerleider LG, Hendler T (2007) Bihemispheric leftward bias in a visuospatial attention-related network. The J Neurosci 27:11271–11278

    Article  CAS  Google Scholar 

  • Siman-Tov T, Papo D, Gadoth N, Schonberg T, Mendelsohn A, Perry D, Hendler T (2009) Mind your left: spatial bias in subcortical fear processing. J Cogn Neurosci 21:1782–1789

    Article  PubMed  Google Scholar 

  • Śmigasiewicz K, Shalgi S, Hsieh S, Möller F, Jaffe S, Chang CC, Verleger R (2010) Left-hemifield bias in the dual-stream RSVP task and reading direction: a study in three nations (Submitted)

  • Stürmer B, Redlich M, Irlbacher K, Brandt S (2007) Executive control over response priming and conflict: a transcranial magnetic stimulation study. Exp Brain Res 183:329–339

    Article  PubMed  Google Scholar 

  • Verleger R, Sprenger A, Gebauer S, Fritzmannova M, Friedrich M, Kraft S, Jaśkowski P (2009) On why left events are the right ones: neural mechanisms underlying the left-hemifield advantage in rapid serial visual presentation. J Cogn Neurosci 21:474–488

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the Deutsche Forschungsgemeinschaft to Rolf Verleger (Ve110/14-1 and Ve110/15-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Verleger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verleger, R., Möller, F., Kuniecki, M. et al. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS. Exp Brain Res 203, 355–365 (2010). https://doi.org/10.1007/s00221-010-2237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2237-z

Keywords

Navigation