Skip to main content
Log in

Egocentric and allocentric reference frames for catching a falling object

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When programming movement, one must account for gravitational acceleration. This is particularly important when catching a falling object because the task requires a precise estimate of time-to-contact. Knowledge of gravity’s effects is intimately linked to our definition of ‘up’ and ‘down’. Both directions can be described in an allocentric reference frame, based on visual and/or gravitational cues, or in an egocentric reference frame in which the body axis is taken as vertical. To test which frame humans use to predict gravity’s effect, we asked participants to intercept virtual balls approaching from above or below with artificially controlled acceleration that could be congruent or not with gravity. To dissociate between these frames, subjects were seated upright (trunk parallel to gravity) or lying down (body axis orthogonal to the gravitational axis). We report data in line with the use of an allocentric reference frame and discuss its relevance depending on available gravity-related cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baures R, Benguigui N, Amorim MA, Siegler IA (2007) Intercepting free falling objects: better use Occam’s razor than internalize Newton’s law. Vis Res 47:2982–2991

    Article  PubMed  Google Scholar 

  • Benguigui N, Ripoll H, Broderick MP (2003) Time-to-contact estimation of accelerated stimuli is based on first-order information. J Exp Psychol Hum Percept Perform 29:1083–1101

    Article  PubMed  Google Scholar 

  • Bootsma RJ, van Wieringen PCW (1990) Timing an attacking forehand drive in table tennis. J Exp Psychol Hum Percept Perform 16:21–29

    Article  Google Scholar 

  • Bortolami SB, Rocca S, Daros S, Dizio P, Lackner JR (2006) Mechanisms of human static spatial orientation. Exp Brain Res 173:374–388

    Article  CAS  PubMed  Google Scholar 

  • Brouwer AM, Brenner E, Smeets JB (2002) Perception of acceleration with short presentation times: can acceleration be used in interception? Percept Psychophys 64:1160–1168

    PubMed  Google Scholar 

  • Carriot J, Dizio P, Nougier V (2008) Vertical frames of reference and control of body orientation. Neurophysiol Clin 38:423–437

    Article  CAS  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  • Gibson JJ (1977) The theory of affordances. In: Shaw RE, Bransford J (eds) Perceiving, acting, and knowing. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Hubbard TL (1990) Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Mem Cogn 18:299–309

    CAS  Google Scholar 

  • Hubbard TL (1995) Cognitive representation of motion: evidence for friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21:241–254

    Article  CAS  PubMed  Google Scholar 

  • Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F (2005) Representation of visual gravitational motion in the human vestibular cortex. Science 308:416–419

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Maioli C (1989a) Adaptation to suppression of visual information during catching. J Neurosci 9:149–159

    CAS  PubMed  Google Scholar 

  • Lacquaniti F, Maioli C (1989b) The role of preparation in tuning anticipatory and reflex responses during catching. J Neurosci 9:134–148

    CAS  PubMed  Google Scholar 

  • Le Seac’h AB, McIntyre J (2007) Multimodal reference frame for the planning of vertical arms movements. Neurosci Lett 423:211–215

    Article  PubMed  Google Scholar 

  • Lee DN, Young DS, Reddish PE, Lough S, Clayton TMH (1983) Visual timing in hitting an accelerating ball. Q J Exp Psychol A 35A:333–346

    Google Scholar 

  • Lipshits M, Bengoetxea A, Cheron G, McIntyre J (2005) Two reference frames for visual perception in two gravity conditions. Perception 34:545–555

    Article  PubMed  Google Scholar 

  • Luyat M, Gentaz E (2002) Body tilt effect on the reproduction of orientations: studies on the visual oblique effect and subjective orientations. J Exp Psychol Hum Percept Perform 28:1002–1011

    Article  PubMed  Google Scholar 

  • Luyat M, Mobarek S, Leconte C, Gentaz E (2005) The plasticity of gravitational reference frame and the subjective vertical: peripheral visual information affects the oblique effect. Neurosci Lett 385:215–219

    Article  CAS  PubMed  Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws? Nat Neurosci 4:693–694

    Article  CAS  PubMed  Google Scholar 

  • McIntyre J, Senot P, Prevost P, Zago M, Lacquaniti F, Berthoz A (2003) The use of on-line perceptual invariants versus cognitive internal models for the predictive control of movement and action. In: Proceedings of the first IEEE EMBS international conference on neural engineering, Capri, pp 438–441

  • Michaels CF, Zeinstra EB, Oudejans RR (2001) Information and action in punching a falling ball. Q J Exp Psychol A 54:69–93

    Article  CAS  PubMed  Google Scholar 

  • Miller WL, Maffei V, Bosco G, Iosa M, Zago M, Macaluso E, Lacquaniti F (2008) Vestibular nuclei and cerebellum put visual gravitational motion in context. J Neurophysiol 99:1969–1982

    Article  PubMed  Google Scholar 

  • Nagai M, Kazai K, Yagi A (2002) Larger forward memory displacement in the direction of gravity. Vis Cogn 9:28–40

    Article  Google Scholar 

  • Port NL, Lee D, Dassonville P, Georgopoulos AP (1997) Manual interception of moving targets. I. Performance and movement initiation. Exp Brain Res 116:406–420

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VS (1988) Perception of shape from shading. Nature 331:163–166

    Article  CAS  PubMed  Google Scholar 

  • Senot P, Prevost P, McIntyre J (2003) Estimating time to contact and impact velocity when catching an accelerating object with the hand. J Exp Psychol Hum Percept Perform 29:219–237

    Article  PubMed  Google Scholar 

  • Senot P, Zago M, Lacquaniti F, McIntyre J (2005) Anticipating the effects of gravity when intercepting moving objects: differentiating up and down with non-visual cues. J Neurophysiol 94:4471–4480

    Article  PubMed  Google Scholar 

  • Todd JT (1981) Visual information about moving objects. J Exp Psychol Hum Percept Perform 7:795–810

    Article  Google Scholar 

  • Tresilian JR (1995) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Percept Psychophys 57:231–245

    CAS  PubMed  Google Scholar 

  • Werkhoven P, Snippe HP, Toet A (1992) Visual processing of optic acceleration. Vis Res 32:2313–2329

    Article  CAS  PubMed  Google Scholar 

  • Zago M, Lacquaniti F (2005) Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth. J Neurophysiol 94:1346–1357

    Article  PubMed  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2004) Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. J Neurophysiol 91:1620–1634

    Article  PubMed  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2005) Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning. J Neurophysiol 93:1055–1068

    Article  PubMed  Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2008) Internal models and prediction of visual gravitational motion. Vis Res 48:1532–1538

    Article  PubMed  Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2009) Visuo-motor coordination and internal models for object interception. Exp Brain Res 192:571–604

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Centre National d’Etudes Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph McIntyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Séac’h, A.B., Senot, P. & McIntyre, J. Egocentric and allocentric reference frames for catching a falling object. Exp Brain Res 201, 653–662 (2010). https://doi.org/10.1007/s00221-009-2081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-2081-1

Keywords

Navigation