Skip to main content
Log in

Auditory dominance over vision in the perception of interval duration

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The “ventriloquist effect” refers to the fact that vision usually dominates hearing in spatial localization, and this has been shown to be consistent with optimal integration of visual and auditory signals (Alais and Burr in Curr Biol 14(3):257–262, 2004). For temporal localization, however, auditory stimuli often “capture” visual stimuli, in what has become known as “temporal ventriloquism”. We examined this quantitatively using a bisection task, confirming that sound does tend to dominate the perceived timing of audio-visual stimuli. The dominance was predicted qualitatively by considering the better temporal localization of audition, but the quantitative fit was less than perfect, with more weight being given to audition than predicted from thresholds. As predicted by optimal cue combination, the temporal localization of audio-visual stimuli was better than for either sense alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14(3):257–262

    PubMed  CAS  Google Scholar 

  • Andersen TS, Tiippana K, Sams M (2004) Factors influencing audiovisual fission and fusion illusions. Brain Res Cogn Brain Res 21(3):301–308

    Article  PubMed  Google Scholar 

  • Arrighi R, Alais D, Burr D (2006) Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. J Vis 6(3):260–268

    Article  PubMed  Google Scholar 

  • Aschersleben G, Bertelson P (2003) Temporal ventriloquism: crossmodal interaction on the time dimension. 2. Evidence from sensorimotor synchronization. Int J Psychophysiol 50(1–2):157–163

    Article  PubMed  Google Scholar 

  • Berger TD, Martelli M, Pelli DG (2003) Flicker flutter: is an illusory event as good as the real thing? J Vis 3(6):406–412

    Article  PubMed  Google Scholar 

  • Clarke JJ, Yuille AL (1990) Data fusion for sensory information processing. Kluwer Academic, Boston

    Google Scholar 

  • Dixon NF, Spitz L (1980) The detection of auditory visual desynchrony. Perception 9(6):719–721

    Article  PubMed  CAS  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. In: Monographs on statistics and applied probability, vol 57. Chapman & Hall, New York

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  PubMed  CAS  Google Scholar 

  • Fendrich R, Corballis PM (2001) The temporal cross-capture of audition and vision. Percept Psychophys 63(4):719–725

    PubMed  CAS  Google Scholar 

  • Gebhard JW, Mowbray GH (1959) On discriminating the rate of visual flicker and auditory flutter. Am J Psychol 72:521–529

    Article  PubMed  CAS  Google Scholar 

  • Ghahramani Z, Wolpert DM, Jordan MI (1997) Computational models of sensorimotor integration. In: Morasso PG, Sanguineti V (eds) Self-organization, computational maps and motor control. Elsevier, Amsterdam, pp 117–147

    Chapter  Google Scholar 

  • Mamassian P (2008) Overconfidence in an objective anticipatory motor task. Psychol Sci 19(6):601–606

    Article  PubMed  Google Scholar 

  • Mateeff S, Hohnsbein J, Noack T (1985) Dynamic visual capture: apparent auditory motion induced by a moving visual target. Perception 14(6):721–727

    Article  PubMed  CAS  Google Scholar 

  • Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17(15):4–163

    Google Scholar 

  • Parise C, Spence C (2008) Synesthetic congruency modulates the temporal ventriloquism effect. Neurosci Lett 442(3):257–261

    Article  PubMed  CAS  Google Scholar 

  • Pick HL, Warren DH, Hay JC (1969) Sensory conflict in judgements of spatial direction. Percept Psychophys 6:203–205

    Google Scholar 

  • Radeau M (1994) Auditory-visual spatial interaction and modularity. Curr Psychol Cogn 13(1):3–51

    PubMed  CAS  Google Scholar 

  • Rose D, Summers J (1995) Duration illusions in a train of visual stimuli. Perception 24(10):1177–1187

    Article  PubMed  CAS  Google Scholar 

  • Sekuler AB, Sekuler R (1999) Collisions between moving visual targets: what controls alternative ways of seeing an ambiguous display? Perception 28(4):415–432

    Google Scholar 

  • Shams L, Kamitani Y, Shimojo S (2000) Illusions. What you see is what you hear. Nature 408(6814):788

    Article  PubMed  CAS  Google Scholar 

  • Shams L, Kamitani Y, Thompson S, Shimojo S (2001) Sound alters visual evoked potentials in humans. Neuroreport 12(17):3849–3852

    Article  PubMed  CAS  Google Scholar 

  • Shipley T (1964) Auditory flutter-driving of visual flicker. Science 145:1328–1330

    Article  PubMed  CAS  Google Scholar 

  • Stekelenburg JJ, Vroomen J (2009) Neural correlates of audiovisual motion capture. Exp Brain Res (in press)

  • Summerfield Q, McGrath M (1984) Detection and resolution of audio-visual incompatibility in the perception of vowels. Q J Exp Psychol A 36(1):51–74

    PubMed  CAS  Google Scholar 

  • Tse P, Intriligator J, Rivest J, Cavanagh P (2004) Attention and the subjective expansion of time. Percept Psychophys 66:1171–1189

    PubMed  Google Scholar 

  • Verghese P, Stone LS (1996) Perceived visual speed constrained by image segmentation. Nature 381(6578):161–163

    Article  PubMed  CAS  Google Scholar 

  • Warren DH, Welch RB, McCarthy TJ (1981) The role of visual-auditory “compellingness” in the ventriloquism effect: implications for transitivity among the spatial senses. Percept Psychophys 30(6):557–564

    PubMed  CAS  Google Scholar 

  • Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33(2):113–120

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Italian Ministry of Universities and Research, EC projects “MEMORY” (FP6-NEST) and “STANIB” (FP7 ERC) and US NIH Research Grant EY-R01-08266 to MSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Burr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burr, D., Banks, M.S. & Morrone, M.C. Auditory dominance over vision in the perception of interval duration. Exp Brain Res 198, 49–57 (2009). https://doi.org/10.1007/s00221-009-1933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1933-z

Keywords

Navigation