Skip to main content
Log in

Proprioceptive target matching asymmetries in left-handed individuals

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In right-handers, the ability to reproduce proprioceptive targets has been shown to be asymmetric, favoring the non-preferred left arm. The present study sought to determine whether a similar arm/hemisphere asymmetry exists for left-handers. Ten strong left-handed adults used the left or right arm to perform proprioceptive target matching tasks that varied in processing demands (i.e., need for memory, interhemispheric transfer) and target amplitude (20, 40°). Similar to right-handers, left-handed individuals had smaller total errors when matching with the non-preferred arm. This asymmetry was greatest in conditions with increased processing demands and larger amplitude targets. These results provide the first evidence to date of right arm/left hemisphere dominance for proprioceptive target matching in left-handers that is the “mirror image” of right-handers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamo DE, Martin BJ (2009) Position sense asymmetry. Exp Brain Res 192:87–95

    Article  PubMed  Google Scholar 

  • Aimonetti JM, Morin D, Schmied A, Vedel JP, Pagni S. Somatosens Mot Res 16: 11-29

  • Boulinguez P, Velay JL, Nougier V (2001) Manual asymmetries in reaching movement control. II: Study of left-handers. Cortex 37:123–138

    Article  PubMed  CAS  Google Scholar 

  • Chase C, Seidler R (2008) Degree of handedness affects intermanual transfer of learning. Exp Brain Res 190:317–328

    Article  PubMed  Google Scholar 

  • Coren S, Porac C (1977) Fifty centuries of right-handedness: the historical record. Science 198:631–632

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci U S A 94:14015–14018

    Article  PubMed  CAS  Google Scholar 

  • Elliott D, Roy E (1996) Manual asymmetries in motor performance. CRC Press, Boca Raton, pp 143–158

    Google Scholar 

  • Gandevia SC, Refshauge KM, Collins DF (2002) Proprioception: peripheral inputs and perceptual interactions. Adv Exp Med Biol 508:61–68

    PubMed  Google Scholar 

  • Gilbert AN, Wysocki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608

    Article  PubMed  CAS  Google Scholar 

  • Goble DJ, Brown SH (2007) Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp Brain Res 180:693–704

    Article  PubMed  Google Scholar 

  • Goble DJ, Brown SH (2008a) Reply to Dr Derakhshan. J Neurophysiol 100:3459

    Article  Google Scholar 

  • Goble DJ, Brown SH (2008b) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610

    Article  PubMed  Google Scholar 

  • Goble DJ, Brown SH (2008c) Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol 99(6):3063–3074

    Article  PubMed  Google Scholar 

  • Goble DJ, Brown SH (2009) Dynamic proprioceptive target matching behavior in the upper limb: effects of speed, task difficulty and arm/hemisphere asymmetries. Behav Brain Res 200(1):7–14

    Article  PubMed  Google Scholar 

  • Goble DJ, Lewis CA, Hurvitz EA, Brown SH (2005) Development of upper limb proprioceptive accuracy in children and adolescents. Hum Mov Sci 24:155–170

    Article  PubMed  Google Scholar 

  • Goble DJ, Lewis CA, Brown SH (2006) Upper limb asymmetries in the utilization of proprioceptive feedback. Exp Brain Res 168:307–311

    Article  PubMed  Google Scholar 

  • Goble DJ, Hurvitz EA, Brown SH (2009) Deficits in the ability to use proprioceptive feedback in children with hemiplegic cerebral palsy. Int J Rehabil Res (in press)

  • Gonzalez CL, Ganel T, Goodale MA (2006) Hemispheric specialization for the visual control of action is independent of handedness. J Neurophysiol 95:3496–3501

    Article  PubMed  Google Scholar 

  • Gonzalez CL, Whitwell RL, Morrissey B, Ganel T, Goodale MA (2007) Left-handedness does not extend to visually guided precision grasping. Exp Brain Res 182:275–279

    Article  PubMed  Google Scholar 

  • Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214

    Article  PubMed  CAS  Google Scholar 

  • Grunewald G, Grunewald-Zuberbier E, Gotzinger R, Mewald J, Schuhmacher H (1987) Hemispheric asymmetry of feedback-related potentials in a positioning task: comparison of right- and left-handed subjects. Biol Psychol 24:209–223

    Article  PubMed  CAS  Google Scholar 

  • Haggard P, Newman C, Blundell J, Andrew H (2000) The perceived position of the hand in space. Percept Psychophys 62:363–377

    PubMed  CAS  Google Scholar 

  • Henry FM (1974) Variable and constant performance errors within a group of individuals. J Mot Behav 6:149–154

    Google Scholar 

  • Imanaka K, Abernethy B (1992a) Cognitive strategies and short-term memory for movement distance and location. Q J Exp Psychol 45:669–700

    CAS  Google Scholar 

  • Imanaka K, Abernethy B (1992b) Interference between location and distance information in motor short-term memory: the respective roles of direct kinesthetic signals and abstract codes. J Mot Behav 24:274–280

    PubMed  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Kurian G, Sharma NK, Santhakumari K (1989) Left-arm dominance in active positioning. Percept Mot Skills 68:1312–1314

    PubMed  CAS  Google Scholar 

  • Leonard G, Milner B (1991a) Contribution of the right frontal lobe to the encoding and recall of kinesthetic distance information. Neuropsychologia 29:47–58

    Article  PubMed  CAS  Google Scholar 

  • Leonard G, Milner B (1991b) Recall of the end-position of examiner-defined arm movements by patients with frontal- or temporal-lobe lesions. Neuropsychologia 29:629–640

    Article  PubMed  CAS  Google Scholar 

  • Liepmann H (1920) Die linke hemisphare und das handeln. Munch Med Wochenschr 49:2322–2326

    Google Scholar 

  • Lutz K, Koeneke S, Wustenberg T, Jancke L (2005) Asymmetry of cortical activation during maximum and convenient tapping speed. Neurosci Lett 373:61–66

    Article  PubMed  CAS  Google Scholar 

  • Marteniuk R (1973) Retention characteristics of motor short-term memory cues. J Mot Behav 5:249–259

    Google Scholar 

  • Marteniuk R, Shields K, Campbell S (1972) Amplitude, position, timing and velocity as cues in reproduction of movement. Percept Mot Skills 35:51–58

    PubMed  CAS  Google Scholar 

  • Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, Zilles K, Ehrsson HH (2005) Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 93:1020–1034

    Article  PubMed  Google Scholar 

  • Naito E, Nakashima T, Kito T, Aramaki Y, Okada T, Sadato N (2007) Human limb-specific and nonlimb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur J Neurosci 25(11):3476–3487

    Article  PubMed  Google Scholar 

  • Nishizawa S (1991) Different pattern of hemisphere specialization between identical kinesthetic spatial and weight discrimination tasks. Neuropsychologia 29:305–312

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Perelle IB, Ehrman L (2005) On the other hand. Behav Genet 35:343–350

    Article  PubMed  Google Scholar 

  • Roy EA, MacKenzie C (1978) Handedness effects in kinesthetic spatial location judgements. Cortex 14:250–258

    PubMed  CAS  Google Scholar 

  • Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213

    Article  PubMed  Google Scholar 

  • Schmidt SL, Oliveira RM, Krahe TE, Filgueiras CC (2000) The effects of hand preference and gender on finger tapping performance asymmetry by the use of an infrared light measurement device. Neuropsychologia 38:529–534

    Article  PubMed  CAS  Google Scholar 

  • Schutz RW, Roy EA (1973) Absolute error: the devil in disguise. J Mot Behav 5:141–153

    Google Scholar 

  • Velay JL, Benoit-Dubrocard S (1999) Hemispheric asymmetry and interhemispheric transfer in reaching programming. Neuropsychologia 37:895–903

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Goble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goble, D.J., Noble, B.C. & Brown, S.H. Proprioceptive target matching asymmetries in left-handed individuals. Exp Brain Res 197, 403–408 (2009). https://doi.org/10.1007/s00221-009-1922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1922-2

Keywords

Navigation